Description Usage Arguments Slots Main results See Also Examples
An S4 class that contains the estimation results of spatial econometric
interaction models estimated by the spflow() function.
There are four subclasses that are specific to the chosen estimation method (OLS, MLE, Bayesian MCMC or S2SLS). They contain some additional information specific to the corresponding method but most behaviours and data are identical among them.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## S4 method for signature 'spflow_model'
coef(object)
## S4 method for signature 'spflow_model'
fitted(object)
## S4 method for signature 'spflow_model'
nobs(object)
## S4 method for signature 'spflow_model'
predict(object, ..., type = "BP")
## S4 method for signature 'spflow_model'
resid(object)
## S4 method for signature 'spflow_model'
results(object)
## S4 method for signature 'spflow_model'
sd_error(object)
## S4 method for signature 'spflow_model_mle'
logLik(object)
## S4 method for signature 'spflow_model_mle_s2sls_ols'
varcov(object)
## S4 method for signature 'spflow_model_mcmc'
mcmc_results(object)
 | 
| object | A  | 
| ... | Further arguments passed to the prediction function | 
| type | A character declaring the type of prediction (for now only "BP") | 
estimation_resultsA data.frame that contains the main results() of the estimation
estimation_controlA list that contains all control parameters of the estimation
(see spflow_control())
NA numeric that corresponds to the number of origin-destination pairs (the sample size in this model)
sd_errorA numeric representing the standard deviation of the residual
R2_corrA numeric that serves as a goodness of fit criterion. The R2_corr is computed as squared correlation between the fitted values and the observed values of the dependent variable.
residA numeric vector of regression residuals
fittedA numeric vector of fitted values computed as the in sample prediction trend signal (TS) prediction described by @Goulard2017
spatial_filter_matrixA matrix (can be sparse) or NULL
design_matrixA matrix (can be sparse) or NULL
varcovA matrix or NULL
llA numeric or NULL
AICA numeric or NULL
BICA numeric or NULL
mcmc_resultsA data.frame containing the estimated parameters for each iteration of the MCMC sampling procedure
The main results are accessed with the results() method.
They are given in the form of a data frame with the following columns;
est: value of the estimated parameter
sd: value of the standard deviation of the parameter
t.test: value of the t-statistic under the two-sided hypothesis that
the parameter value is 0.
p.val: the p-value associated to the t-test
quant_025: for Bayesian estimation the lower bound of 95% interval
quant_975: for Bayesian estimation the upper bound of 95% interval
spflow(), spflow_network_classes()
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | spflow_results <- spflow(y9 ~ . + G_(DISTANCE),multi_net_usa_ge)
# General methods
results(spflow_results) # data.frame of main results
coef(spflow_results) # vector of estimated coefficients
fitted(spflow_results) # vector of fitted values
resid(spflow_results) # vector of residuals
nobs(spflow_results) # number of observations
sd_error(spflow_results) # standard deviation of the error term
predict(spflow_results) # computation of the in sample predictor
# MLE methods
logLik(spflow_results) # value of the likelihood function
# MLE, OLS and S2SLS methods
varcov(spflow_results) # variance covariance matrix of the estimators
# MCMC methods
spflow_results_mcmc <- spflow(
  y2 ~ . + G_(DISTANCE),
  multi_net_usa_ge,
  flow_control = spflow_control(estimation_method = "mcmc",
                                model = "model_2"))
results(spflow_results)
mcmc_results(spflow_results_mcmc) # parameter values during the mcmc sampling
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.