mSpline | R Documentation |
Generates the basis matrix of regular M-spline, periodic M-spline, and the corresponding integrals and derivatives.
mSpline(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,
derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...
)
msp(
x,
df = NULL,
knots = NULL,
degree = 3L,
intercept = FALSE,
Boundary.knots = NULL,
periodic = FALSE,
derivs = 0L,
integral = FALSE,
warn.outside = getOption("splines2.warn.outside", TRUE),
...
)
x |
The predictor variable. Missing values are allowed and will be returned as they are. |
df |
Degree of freedom that equals to the column number of the returned
matrix. One can specify |
knots |
The internal breakpoints that define the splines. The default
is |
degree |
A nonnegative integer specifying the degree of the piecewise
polynomial. The default value is |
intercept |
If |
Boundary.knots |
Boundary points at which to anchor the splines. By
default, they are the range of |
periodic |
A logical value. If |
derivs |
A nonnegative integer specifying the order of derivatives of
splines basis function. The default value is |
integral |
A logical value. If |
warn.outside |
A logical value indicating if a warning should be thrown
out when any |
... |
Optional arguments that are not used. |
This function contains an implementation of the closed-form M-spline basis
based on the recursion formula given by Ramsay (1988) or periodic M-spline
basis following the procedure producing periodic B-splines given in Piegl
and Tiller (1997). For monotone regression, one can use I-splines (see
iSpline
) instead of M-splines. For shape-restricted
regression, see Wang and Yan (2021) for examples.
The function msp()
is an alias of to encourage the use in a model
formula.
A numeric matrix of length(x)
rows and df
columns if
df
is specified. If knots
are specified instead, the
output matrix will consist of length(knots) + degree +
as.integer(intercept)
columns if periodic = FALSE
, or
length(knots) + as.integer(intercept)
columns if periodic =
TRUE
. Attributes that correspond to the arguments specified are
returned for usage of other functions in this package.
Ramsay, J. O. (1988). Monotone regression splines in action. Statistical science, 3(4), 425–441.
Piegl, L., & Tiller, W. (1997). The NURBS book. Springer Science & Business Media.
Wang, W., & Yan, J. (2021). Shape-restricted regression splines with R package splines2. Journal of Data Science, 19(3),498–517.
bSpline
for B-splines;
iSpline
for I-splines;
cSpline
for C-splines.
library(splines2)
### example given in the reference paper by Ramsay (1988)
x <- seq.int(0, 1, 0.01)
knots <- c(0.3, 0.5, 0.6)
msMat <- mSpline(x, knots = knots, degree = 2, intercept = TRUE)
op <- par(mar = c(2.5, 2.5, 0.2, 0.1), mgp = c(1.5, 0.5, 0))
plot(msMat, mark_knots = "internal")
## derivatives of M-splines
dmsMat <- mSpline(x, knots = knots, degree = 2,
intercept = TRUE, derivs = 1)
## or using the deriv method
dmsMat1 <- deriv(msMat)
stopifnot(all.equal(dmsMat, dmsMat1, check.attributes = FALSE))
### periodic M-splines
x <- seq.int(0, 3, 0.01)
bknots <- c(0, 1)
pMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE)
## integrals
iMat <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, integral = TRUE)
## first derivatives by "derivs = 1"
dMat1 <- mSpline(x, knots = knots, degree = 3, intercept = TRUE,
Boundary.knots = bknots, periodic = TRUE, derivs = 1)
## first derivatives by using the deriv() method
dMat2 <- deriv(pMat)
par(mfrow = c(2, 2))
plot(pMat, ylab = "Periodic Basis", mark_knots = "boundary")
plot(iMat, ylab = "Integrals from 0")
abline(v = seq.int(0, max(x)), h = seq.int(0, max(x)), lty = 2, col = "grey")
plot(dMat1, ylab = "1st derivatives by 'derivs=1'", mark_knots = "boundary")
plot(dMat2, ylab = "1st derivatives by 'deriv()'", mark_knots = "boundary")
par(op) # reset to previous plotting settings
### default placement of internal knots for periodic splines
default_knots <- function(x, df, intercept = FALSE,
Boundary.knots = range(x, na.rm = TRUE)) {
## get x in the cyclic interval [0, 1)
x2 <- (x - Boundary.knots[1]) %% (Boundary.knots[2] - Boundary.knots[1])
knots <- quantile(x2, probs = seq(0, 1, length.out = df + 2 - intercept))
unname(knots[- c(1, length(knots))])
}
df <- 8
degree <- 3
intercept <- TRUE
internal_knots <- default_knots(x, df, intercept)
## 1. specify df
spline_basis1 <- mSpline(x, degree = degree, df = df,
periodic = TRUE, intercept = intercept)
## 2. specify knots
spline_basis2 <- mSpline(x, degree = degree, knots = internal_knots,
periodic = TRUE, intercept = intercept)
all.equal(internal_knots, knots(spline_basis1))
all.equal(spline_basis1, spline_basis2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.