Nothing
library(spsurv)
data("veteran")
# ML approach:
fit <- spbp(Surv(time, status)~karno+factor(celltype),
approach = "mle", data = veteran)
summary(fit)
vcov(fit)
coef(fit)
model.matrix(fit)
# stan_dens(fit)
# traceplot(fit)
# extract(fit)
# Bayesian approach:
fit2 <- spbp(Surv(time, status) ~ karno + factor(celltype),
approach = "bayes", data = veteran, chains = 1, iter = 1000, cores = 1)
summary(fit2)
# vcov(fit2)
# coef(fit2)
model.matrix(fit2)
stan_dens(fit2)
traceplot(fit2)
extract(fit2)
## PH model
bpph(Surv(time, status)~karno+factor(celltype), data = veteran)## PO model
bpph(Surv(time, status)~karno+factor(celltype), approach = "bayes", data = veteran,
iter = 1000, chains = 1, cores = 1)## PH model
## PO model
bppo(Surv(time, status)~karno+factor(celltype), data = veteran)## PO model
bppo(Surv(time, status)~karno+factor(celltype), approach = "bayes", data = veteran,
iter = 1000, chains = 1, cores = 1)## PO model
## AFT model
bpaft(Surv(time, status)~karno+factor(celltype), data = veteran)## AFT model
bpaft(Surv(time, status)~karno+factor(celltype), approach = "bayes", data = veteran,
iter = 10, chains = 1, cores = 1)## PO model
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.