The sreg
package for R
, offers a toolkit for estimating average treatment effects (ATEs) in stratified randomized experiments. It supports a wide range of stratification designs, including matched pairs, $k$-tuple designs, and larger strata with many units — possibly of unequal size across strata. The package is designed to accommodate scenarios with multiple treatments, and cluster-level treatment assignments, and accomodates optimal linear covariate adjustment based on baseline observable characteristics. The package computes estimators and standard errors based on Bugni, Canay, Shaikh (2018); Bugni, Canay, Shaikh, Tabord-Meehan (2023); Jiang, Linton, Tang, Zhang (2023); Bai, Jiang, Romano, Shaikh, Zhang (2024); Bai (2022); Bai, Romano, Shaikh (2022); Liu (2024); and Cytrynbaum (2024).
Dependencies: dplyr
, tidyr
, extraDistr
, rlang
Suggests: haven
, knitr
, rmarkdown
, testthat (>= 3.0.0)
R
version required: >= 2.10
Juri Trifonov jutrifonov@u.northwestern.edu
Yuehao Bai yuehao.bai@usc.edu
Azeem Shaikh amshaikh@uchicago.edu
Max Tabord-Meehan m.tabordmeehan@utoronto.ca
PDF version of the manual: Download PDF
Big Strata: Sketch of the derivation of the ATE variance estimator under cluster-level treatment assignment: Download PDF
Big Strata: Expressions for the multiple treatment case (with and without clusters): Download PDF
Small Strata: Expressions for the multiple treatment case (with and without clusters): Download PDF
Mixed Design: Expressions for the multiple treatment case (with and without clusters): Download PDF
Install the official CRAN release using:
install.packages("sreg")
trying URL 'https://ftp.osuosl.org/pub/cran/src/contrib/sreg_1.0.1.tar.gz'
Content type 'application/x-gzip' length 43389 bytes (42 KB)
==================================================
downloaded 42 KB
* installing *source* package ‘sreg’ ...
** package ‘sreg’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (sreg)
The downloaded source packages are in
‘/private/var/folders/mp/06gjwr8j56zdp5j2vgdkd4z40000gq/T/RtmpVk96vN/downloaded_packages’
library(sreg)
#> ____ ____ _____ ____ Stratified Randomized
#> / ___|| _ \| ____/ ___| Experiments
#> \___ \| |_) | _|| | _
#> ___) | _ <| |__| |_| |
#> |____/|_| \_\_____\____| version 1.0.1
#> Type 'citation("sreg")' for citing this R package in publications.
The latest development version can be installed using devtools
.
library(devtools)
install_github("jutrifonov/sreg")
Downloading GitHub repo jutrifonov/sreg@HEAD
── R CMD build ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
✔ checking for file ‘/private/var/folders/mp/06gjwr8j56zdp5j2vgdkd4z40000gq/T/RtmpVk96vN/remotes1026130d7f9b4/jutrifonov-sreg-53c1377/DESCRIPTION’ ...
─ preparing ‘sreg’:
✔ checking DESCRIPTION meta-information ...
─ checking for LF line-endings in source and make files and shell scripts
─ checking for empty or unneeded directories
─ building ‘sreg_2.0.0.9000.tar.gz’
Installing package into ‘/opt/homebrew/lib/R/4.4/site-library’
(as ‘lib’ is unspecified)
* installing *source* package ‘sreg’ ...
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (sreg)
library(sreg)
ℹ Loading sreg
#> ____ ____ _____ ____ Stratified Randomized
#> / ___|| _ \| ____/ ___| Experiments
#> \___ \| |_) | _|| | _
#> ___) | _ <| |__| |_| |
#> |____/|_| \_\_____\____| version 2.0.0.9000
#> Type 'citation("sreg")' for citing this R package in publications.
sreg()
Estimates the ATE(s) and the corresponding standard error(s) for a (collection of) treatment(s) relative to a control.
sreg(Y, S = NULL, D, G.id = NULL, Ng = NULL, X = NULL, HC1 = TRUE, small.strata = FALSE)
Y
- a numeric vector/matrix/data.frame/tibble
of the observed outcomes;S
- a numeric vector/matrix/data.frame/tibble
of strata indicators $\{0, 1, 2, \ldots\}$; if NULL
then the estimation is performed assuming no stratification;D
- a numeric vector/matrix/data.frame/tibble
of treatments indexed by $\{0, 1, 2, \ldots\}$, where D = 0
denotes the control;G.id
- a numeric vector/matrix/data.frame/tibble
of cluster indicators; if NULL
then estimation is performed assuming treatment is assigned at the individual level;Ng
- a numeric vector/matrix/data.frame/tibble
of cluster sizes; if NULL
then Ng
is assumed to be equal to the number of available observations in every cluster;X
- a matrix/data.frame/tibble
with columns representing the covariate values for every observation; if NULL
then the estimator without linear adjustments is applied [^*];HC1
- a TRUE/FALSE
logical argument indicating whether the small sample correction should be applied to the variance estimator;small.strata
- a TRUE/FALSE
logical argument indicating whether the estimators for small strata (i.e., strata with few units, such as matched pairs or n-tuples) should be used [^].
[^]: Note: sreg cannot use individual-level covariates for covariate adjustment in cluster-randomized experiments. Any individual-level covariates will be aggregated to their cluster-level averages.*
[^]: Note: if the data exhibit a mixed design (i.e., most observations are in small strata, but some are in big strata) and small.strata = TRUE
, the function implements the mixed estimator—a weighted average of small and big strata estimators. See the supplementary PDF for details and expressions.Here we provide an example of a data frame that can be used with sreg
.
| Y | S | D | G.id | Ng | x_1 | x_2 |
|--------------|---|---|------|----|------------|---------------|
| -0.57773576 | 2 | 0 | 1 | 10 | 1.5597899 | 0.03023334 |
| 1.69495638 | 2 | 0 | 1 | 10 | 1.5597899 | 0.03023334 |
| 2.02033740 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| 1.22020493 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| 1.64466086 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| -0.32365109 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| 2.21008191 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| -2.25064316 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
| 0.37962312 | 4 | 2 | 2 | 30 | 0.8747419 | -0.77090031 |
sreg
prints a "Stata-style" table containing the ATE estimates, corresponding standard errors, $t$-statistics, $p$-values, $95$% asymptotic confidence intervals, and significance indicators for different levels $\alpha$. The example of the printed output is provided below.
Saturated Model Estimation Results under CAR
Observations: 2710
Clusters: 100
Number of treatments: 2
Number of strata: 10
Setup: big strata
Standard errors: adjusted (HC1)
Treatment assignment: cluster level
Covariates used in linear adjustments:
---
Coefficients:
Tau As.se T-stat P-value CI.left(95%) CI.right(95%) Significance
1 1.13687 0.31181 3.64608 0.00027 0.52574 1.74799 ***
2 0.66447 0.30263 2.19565 0.02812 0.07133 1.25761 *
---
Signif. codes: 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1
The function returns an object of class sreg
that is a list containing the following elements:
tau.hat
- a $1 \times |\mathcal A|$ vector of ATE estimates, where $|\mathcal A|$ represents the number of treatments;
se.rob
- a $1 \times |\mathcal A|$ vector of standard errors estimates, where $|\mathcal A|$ represents the number of treatments;
t.stat
- a $1 \times |\mathcal A|$ vector of $t$-statistics, where $|\mathcal A|$ represents the number of treatments;
p.value
- a $1 \times |\mathcal A|$ vector of corresponding $p$-values, where $|\mathcal A|$ represents the number of treatments;
CI.left
- a $1 \times |\mathcal A|$ vector of the left bounds of the $95$% as. confidence interval;
CI.right
- a $1 \times |\mathcal A|$ vector of the right bounds of the $95$% as. confidence interval;
data
- an original data of the form data.frame(Y, S, D, G.id, Ng, X)
;
lin.adj
- a data.frame
representing the covariates that were used in implementing linear adjustments;
small.strata
- a TRUE/FALSE
logical argument indicating whether the estimators for small strata (e.g., matched pairs or n-tuples) were used;
HC1
- a TRUE/FALSE
logical argument indicating whether the small sample correction (HC1) was applied to the variance estimator.
Here, we provide the empirical application example using the data from (Chong et al., 2016), who studied the effect of iron deficiency anemia on school-age children's educational attainment and cognitive ability in Peru. The example replicates the empirical illustration from (Bugni et al., 2019). For replication purposes, the data is included in the package and can be accessed by running data("AEJapp")
. This example can be accessed directly in R
via help(sreg)
.
library(sreg, dplyr, haven)
The description of the dataset can be accessed using help()
:
help(AEJapp)
We can upload the AEJapp
dataset to the R
session via data()
:
data("AEJapp")
data <- AEJapp
It is pretty straightforward to prepare the data to fit the package syntax using dplyr
:
Y <- data$gradesq34
D <- data$treatment
S <- data$class_level
data.clean <- data.frame(Y, D, S)
data.clean <- data.clean %>%
mutate(D = ifelse(D == 3, 0, D))
Y <- data.clean$Y
D <- data.clean$D
S <- data.clean$S
head(data.clean)
Y D S
1 11.2 1 1
2 12.4 0 3
3 11.9 0 5
4 13.1 0 1
5 13.4 2 2
6 10.7 0 1
We can take a look at the frequency table of D
and S
:
table(D = data.clean$D, S = data.clean$S)
S
D 1 2 3 4 5
0 15 19 16 12 10
1 16 19 15 10 10
2 17 20 15 11 10
Now, it is straightforward to replicate the results from (Bugni et al, 2019) using sreg
:
result <- sreg::sreg(Y = Y, S = S, D = D)
print(result)
Saturated Model Estimation Results under CAR
Observations: 215
Number of treatments: 2
Number of strata: 5
Setup: big strata
Standard errors: adjusted (HC1)
Treatment assignment: individual level
Covariates used in linear adjustments:
---
Coefficients:
Tau As.se T-stat P-value CI.left(95%) CI.right(95%) Significance
1 -0.05113 0.20645 -0.24766 0.80440 -0.45577 0.35351
2 0.40903 0.20651 1.98065 0.04763 0.00427 0.81379 *
---
Signif. codes: 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1
Besides that, sreg
allows adding linear adjustments (covariates) to the estimation procedure:
pills <- data$pills_taken
age <- data$age_months
data.clean <- data.frame(Y, D, S, pills, age)
data.clean <- data.clean %>%
mutate(D = ifelse(D == 3, 0, D))
Y <- data.clean$Y
D <- data.clean$D
S <- data.clean$S
X <- data.frame("pills" = data.clean$pills, "age" = data.clean$age)
result <- sreg::sreg(Y, S, D, G.id = NULL, X = X)
print(result)
Saturated Model Estimation Results under CAR with linear adjustments
Observations: 215
Number of treatments: 2
Number of strata: 5
Setup: big strata
Standard errors: adjusted (HC1)
Treatment assignment: individual level
Covariates used in linear adjustments: pills, age
---
Coefficients:
Tau As.se T-stat P-value CI.left(95%) CI.right(95%) Significance
1 -0.02862 0.17964 -0.15929 0.87344 -0.38071 0.32348
2 0.34609 0.18362 1.88477 0.05946 -0.01381 0.70598 .
---
Signif. codes: 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1
Beginning with version 2.0.0+
, the sreg
package supports experimental designs with small strata (e.g., matched pairs or k
-tuples) via the small.strata argument in the sreg function. We demonstrate its implementation using simulated data generated by sreg.rgen()
under a matched triplets design.
data <- sreg.rgen(n = 300, tau.vec = c(1.2, 0.8), cluster = FALSE, small.strata = TRUE, k = 3, treat.sizes = c(1, 1, 1))
> head(data)
Y S D x_1 x_2
1 2.6455170 1 0 5.594675 1.9023835
2 6.6589024 1 2 6.450984 4.2343208
3 4.3412644 1 1 4.787852 3.1895694
4 -0.7592291 2 2 6.240883 0.7458935
5 5.1391241 2 1 6.076305 2.6105942
6 2.3934378 2 0 5.403182 3.4032419
result <- sreg(Y = data$Y, S = data$S, D = data$D, X = data.frame('x_1' = data$x_1, 'x_2' = data$x_2), small.strata = TRUE)
> print(result)
Saturated Model Estimation Results under CAR with linear adjustments
Observations: 300
Number of treatments: 2
Number of strata: 100
Setup: small strata
Strata size (k): 3
Standard errors: adjusted (HC1)
Treatment assignment: individual level
Covariates used in linear adjustments: x_1, x_2
---
Coefficients:
Tau As.se T-stat P-value CI.left(95%) CI.right(95%) Significance
1 1.11577 0.13995 7.97258 0e+00 0.84147 1.39006 ***
2 0.58806 0.13439 4.37574 1e-05 0.32466 0.85147 ***
---
Signif. codes: 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1
plot.sreg()
Visualizes the estimated average treatment effects (ATEs) and their confidence intervals from an object returned by sreg()
. This function defines an S3
method for the generic plot()
function for objects of class sreg
.
plot(x,
treatment_labels = NULL,
title = "Estimated ATEs with Confidence Intervals",
bar_fill = NULL,
point_shape = 23,
point_size = 3,
point_fill = "white",
point_stroke = 1.2,
point_color = "black",
label_color = "black",
label_size = 4,
bg_color = NULL,
grid = TRUE,
zero_line = TRUE,
y_axis_title = NULL,
x_axis_title = NULL,
...)
x
- an object of class sreg
, returned by the sreg()
function;treatment_labels
- an optional vector
of labels to display on the y-axis; if NULL
, defaults to "Treatment 1", "Treatment 2", etc.;title
- an optional string
specifying the plot title; default is "Estimated ATEs with Confidence Intervals";bar_fill
- an optional color specification for the confidence interval bars; can be NULL
(default viridis scale), a single color, or a vector of two colors for a gradient;point_shape
- an integer
specifying the shape of the point representing the estimated ATE; default is 23 (diamond);point_size
- a numeric
value specifying the size of the ATE point;point_fill
- a string
indicating the fill color of the ATE point shape;point_stroke
- a numeric
value for the stroke (border thickness) of the ATE point shape;point_color
- a string
specifying the outline color of the ATE point;label_color
- a string
indicating the color of the text label displaying the estimate and standard error;label_size
- a numeric
value for the size of the text label;bg_color
- an optional string
specifying the background color of the plot panel; if NULL
, the default theme background is used;grid
- a TRUE/FALSE
argument indicating whether grid lines should be displayed (TRUE
by default);zero_line
- a TRUE/FALSE
argument indicating whether to include a dashed vertical line at 0 (TRUE
by default);y_axis_title
- an optional string
specifying the y-axis title; if NULL
, no title is displayed;x_axis_title
- an optional string
specifying the x-axis title; if NULL
, no title is displayed;...
- additional arguments passed to other methods (not used in this method).Invisibly returns the ggplot
object used to generate the figure. The function is called primarily for its side effect — rendering the plot.
library("sreg")
library("dplyr")
library("haven")
data <- sreg.rgen(n = 1000, tau.vec = c(-0.3, 0.2), n.strata = 4, cluster = FALSE)
Y <- data$Y
S <- data$S
D <- data$D
X <- data.frame("x_1" = data$x_1, "x_2" = data$x_2)
result <- sreg(Y, S, D, G.id = NULL, Ng = NULL, X)
plot(result)
print.sreg()
Prints a summary table of the estimated treatment effects from an object returned by sreg()
.
This function defines an S3
method for the generic print()
function for objects of class sreg
. This method prints a formatted summary table that includes the estimated average treatment effects, standard errors, $p$-values, confidence intervals, and details about the experimental design.
print.sreg(x, ...)
x
- an object of class sreg
, typically returned by the sreg()
function;...
- additional arguments.sreg.rgen()
Generates the observed outcomes, treatment assignments, strata indicators, cluster indicators, cluster sizes, and covariates for estimating the treatment effect following the stratified block randomization design under covariate-adaptive randomization (CAR).
sreg.rgen(n, Nmax = 50, n.strata,
tau.vec = c(0), gamma.vec = c(0.4, 0.2, 1),
cluster = TRUE, is.cov = TRUE, small.strata = FALSE,
k = 3, treat.sizes = c(1, 1, 1))
n
- a total number of observations in a sample;Nmax
- a maximum size of generated clusters (maximum number of observations in a cluster);n.strata
- an integer
specifying the number of strata;tau.vec
- a numeric $1 \times |\mathcal A|$ vector
of treatment effects, where $|\mathcal A|$ represents the number of treatments;gamma.vec
- a numeric $1 \times 3$ vector
of parameters corresponding to covariates;cluster
- a TRUE/FALSE
argument indicating whether the dgp should use a cluster-level treatment assignment or individual-level;is.cov
- a TRUE/FALSE
argument indicating whether the dgp should include covariates or not;small.strata
- a TRUE/FALSE
argument indicating whether the data-generating process should use a small-strata design (e.g., matched pairs, $n$-tuples);k
- an integer specifying the number of units per stratum when small.strata = TRUE
;treat.sizes
- a numeric $1 \times (|\mathcal A| + 1)$ vector
specifying the number of units assigned to each treatment within a stratum; the first element corresponds to control units ($D = 0$), the second to the first treatment ($D = 1$), and so on.Y
- a numeric $n \times 1$ vector
of the observed outcomes;S
- a numeric $n \times 1$ vector
of strata indicators;D
- a numeric $n \times 1$ vector
of treatments indexed by $\{0, 1, 2, \ldots\}$, where D = 0
denotes the control;G.id
- a numeric $n \times 1$ vector
of cluster indicators;Ng
- a numeric vector/matrix/data.frame
of cluster sizes; if NULL
then Ng
is assumed to be equal to the number of available observations in every cluster;X
- a data.frame
with columns representing the covariate values for every observation.library(sreg)
# big stata
data <- sreg.rgen(n = 1000, tau.vec = c(0), n.strata = 4, cluster = TRUE)
> head(data)
Y S D x_1 x_2
1 1.717293 1 0 4.772092 2.4138491
2 2.553695 2 0 5.413440 2.0551019
3 2.237556 3 2 6.611161 0.9300293
4 1.825809 3 1 2.735503 1.7839981
5 5.536280 2 2 2.469239 2.0495611
6 1.628753 2 0 4.887561 2.1327071
# matched pairs (small strata)
data <- sreg.rgen(n = 100, tau.vec = c(1.2), cluster = FALSE, small.strata = TRUE, k = 2, treat.sizes = c(1, 1))
> head(data)
Y S D x_1 x_2
1 2.0393535 1 1 7.904694 1.487941
2 3.3839515 1 0 3.461776 2.832059
3 1.7250989 2 0 3.049906 3.170014
4 3.0991776 2 1 7.437064 1.098371
5 1.7406104 3 1 5.008703 1.750753
6 0.6986514 3 0 3.418835 1.375744
Bugni, F. A., Canay, I. A., and Shaikh, A. M. (2018). Inference Under Covariate-Adaptive Randomization. Journal of the American Statistical Association, 113(524), 1784–1796, doi:10.1080/01621459.2017.1375934.
Bugni, F., Canay, I., Shaikh, A., and Tabord-Meehan, M. (2024+). Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes. Forthcoming in the Journal of Political Economy: Microeconomics, doi:10.48550/arXiv.2204.08356.
Jiang, L., Linton, O. B., Tang, H., and Zhang, Y. (2023+). Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance. Forthcoming in Review of Economics and Statistics, doi:10.48550/arXiv.2204.08356.
Bai, Y., Jiang, L., Romano, J. P., Shaikh, A. M., and Zhang, Y. (2024). Covariate adjustment in experiments with matched pairs. Journal of Econometrics, 241(1), doi:10.1016/j.jeconom.2024.105740.
Bai, Y. (2022). Optimality of Matched-Pair Designs in Randomized Controlled Trials. American Economic Review, 112(12), doi:10.1257/aer.20201856.
Bai, Y., Romano, J. P., and Shaikh, A. M. (2022). Inference in Experiments With Matched Pairs. Journal of the American Statistical Association, 117(540), doi:10.1080/01621459.2021.1883437.
Liu, J. (2024). Inference for Two-stage Experiments under Covariate-Adaptive Randomization. doi:10.48550/arXiv.2301.09016.
Cytrynbaum, M. (2024). Covariate Adjustment in Stratified Experiments. Quantitative Economics, 15(4), 971–998, doi:10.3982/QE2475
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.