Nothing
#' Stochastic Search Inconsistency Factor Selection of interventions for smoking cessation
#'
#' @description
#' Stochastic Search Inconsistency Factor Selection for the evaluation of the consistency
#' assumption for the network meta-analysis model.
#'
#' These data are used as an example in Dias et al. (2013).
#'
#' @name smokingcessation
#'
#' @docType data
#'
#' @format
#' A data frame with the following columns:
#' \tabular{rl}{
#' \bold{\emph{event1}}\tab number of individuals with successful
#' smoking cessation in arm 1 \cr
#' \bold{\emph{n1}}\tab number of individuals in arm 1 \cr
#' \bold{\emph{event2}}\tab number of individuals with successful
#' smoking cessation in arm 2 \cr
#' \bold{\emph{n2}}\tab number of individuals in arm 2 \cr
#' \bold{\emph{event3}}\tab number of individuals with successful
#' smoking cessation in arm 3 \cr
#' \bold{\emph{n3}}\tab number of individuals in arm 3 \cr
#' \bold{\emph{treat1}}\tab treatment 1 \cr
#' \bold{\emph{treat2}}\tab treatment 2 \cr \bold{\emph{treat3}}\tab
#' treatment 3
#' }
#'
#'
#' @source
#' Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G and Ades AE (2013):
#' Evidence Synthesis for Decision Making 4: Inconsistency in networks
#' of evidence based on randomized controlled trials.
#' \emph{Medical Decision Making},
#' \bold{33}, 641--56
#'
#' @importFrom meta pairwise
#'
#' @examples
#' data(smokingcessation)
#'
#' # Transform data from arm-based format to contrast-based format
#'
#' smokingcessation$id <- 1:dim(smokingcessation)[1]
#' smoking.pair <- meta::pairwise(
#' treat = list(treat1, treat2, treat3),
#' event = list(event1, event2, event3),
#' n = list(n1, n2, n3),
#' studlab = id,
#' data = smokingcessation,
#' sm = "OR"
#' )
#'
#' TE <- smoking.pair$TE
#' seTE <- smoking.pair$seTE
#' studlab <- smoking.pair$studlab
#' treat1 <- smoking.pair$treat1
#' treat2 <- smoking.pair$treat2
#'
#' # Stochastic Search Inconsistency Factor Selection using as reference treatment A and the
#' # design-by-treatment method for the specification of the Z matrix.
#'
#' m <- ssifs(TE, seTE, treat1, treat2, studlab, ref = "A",
#' M = 1000, B = 100, M_pilot = 1000, B_pilot = 100)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.