HeckmanSK | R Documentation |
Fits a sample selection model based on the Skew-Normal distribution using Maximum Likelihood Estimation (MLE). This model allows for asymmetry in the distribution of the outcome variable's error term, addressing potential skewness.
HeckmanSK(
selection,
outcome,
data = sys.frame(sys.parent()),
lambda,
start = NULL
)
selection |
A formula specifying the selection equation. |
outcome |
A formula specifying the outcome equation. |
data |
A data frame containing the variables. |
lambda |
Initial start value for the skewness parameter ( |
start |
Optional numeric vector of initial parameter values. |
The function implements MLE for a sample selection model where the outcome equation's errors follow a Skew-Normal distribution, as proposed in \insertCiteogundimu2016sample;textualssmodels. The optimization is performed via the BFGS algorithm.
The results include estimates for:
Selection equation coefficients.
Outcome equation coefficients.
Standard deviation of the error term (sigma
).
Correlation between the selection and outcome errors (rho
).
Skewness parameter (lambda
).
Robust standard errors from the Fisher information matrix.
A list containing:
coefficients
: Named vector of estimated model parameters.
value
: The (negative) log-likelihood at convergence.
loglik
: The maximum log-likelihood.
counts
: Number of gradient evaluations.
hessian
: Hessian matrix at the optimum.
fisher_infoSK
: Approximate Fisher information matrix.
prop_sigmaSK
: Standard errors for the estimates.
level
: Levels of the selection variable.
nObs
: Number of observations.
nParam
: Number of model parameters.
N0
: Number of censored (unobserved) observations.
N1
: Number of observed (uncensored) observations.
NXS
: Number of covariates in the selection equation.
NXO
: Number of covariates in the outcome equation.
df
: Degrees of freedom (observations minus parameters).
aic
: Akaike Information Criterion.
bic
: Bayesian Information Criterion.
initial.value
: Initial parameter values used.
ogundimu2016samplessmodels
data("Mroz87")
attach(Mroz87)
selectEq <- lfp ~ huswage + kids5 + mtr + fatheduc + educ + city
outcomeEq <- log(wage) ~ educ + city
HeckmanSK(selectEq, outcomeEq, data = Mroz87, lambda = -1.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.