smooth.sspline: Smoothing Spline on the Sphere

Description Usage Arguments Details Value Note Author(s) References Examples

Description

It fits a smoothing splines on the sphere with the smoothing parameter chosen by the generalized cross validation (GCV) criteria or given by the user.

Usage

1
  smooth.sspline(lon, lat, y, m = 2, smth = 0, lambda = 0)

Arguments

lon

numeric vector, the longitudes

lat

numeric vector, the latitudes

y

numeric vector, the observations at (lon, lat)

m

integer, order of smoothing, takes value from 1 to 10. Default to 2

smth

method for choosing the smoothing parameter: 0, gcv method; 1, user specified. Default to 0

lambda

used only when smth = 1.

Details

It calls Fortran subroutine with the .Fortran interface.

Value

A smooth.sspline object with the components

lon

the original longitude

lat

the original latitude

obs

the original observation

lambda

the lambda that minimizes the gcv score

gcv

the corresponding gcv value at lambda

varhat

the estimated variance

c

the coefficient vector c for the estimated function

d

the coefficient d for the estimated function

yhat

the estimated (smoothed) observation

call

the call to smooth.sspline

Note

The longitudes and latitudes are measured in degrees.

Author(s)

Xianhong Xie

References

Grace Wahba (1981), Spline Interpolation and Smoothing on the Sphere, SIAM J. SCI. STAT. COMPUT.

Examples

1
2
3
4
5
6
subdat <- WTdiff[sample(nrow(WTdiff), 200), 2:4]
attach(subdat)

smooth.sspline(lon, lat, avgd)

detach(subdat)

Example output

Call:
  smooth.sspline(lon = lon, lat = lat, y = avgd)

Sample Size n: 200 
Order of Smooth: 2 
Smoothing Par: 0 
GCV Criteria: 16.08341 
Estimated Var: 0 

sspline documentation built on May 2, 2019, 2:17 a.m.