pick_weightpars | R Documentation |
pick_weightpars
picks the transition weight parameters from the given parameter vector.
pick_weightpars(
p,
M,
d,
params,
weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold",
"exogenous"),
weightfun_pars = NULL,
cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t")
)
p |
the autoregressive order of the model |
M |
the number of regimes |
d |
the number of time series in the system, i.e., the dimension |
params |
a real valued vector specifying the parameter values.
Should have the form
For models with...
Above, |
weight_function |
What type of transition weights
See the vignette for more details about the weight functions. |
weightfun_pars |
|
cond_dist |
specifies the conditional distribution of the model as |
weight_function = "relative_dens"
:Returns a length M
vector containing the transition weight
parameters \alpha_{m}, m=1,...,M
, including the non-parametrized \alpha_{M}
.
weight_function="logistic"
:Returns a length two vector (c,\gamma)
, where
c\in\mathbb{R}
is the location parameter and \gamma >0
is the scale parameter.
weight_function = "mlogit"
:Returns a length (M-1)k
vector (\gamma_1,...,\gamma_M)
,
where \gamma_m
(k\times 1)
, m=1,...,M-1
(\gamma_M=0
) contains the mlogit-regression
coefficients of the m
th regime. Specifically, for switching variables with indices in
J\subset\lbrace 1,...,d\rbrace
, and with \tilde{p}\in\lbrace 1,...,p\rbrace
lags included,
\gamma_m
contains the coefficients for the vector
z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace})
, where
\tilde{z}_{i} =(y_{j,t-1},...,y_{j,t-\tilde{p}})
, i\in I
. So k=1+|I|\tilde{p}
where |I|
denotes the number of elements in I
.
weight_function="exponential"
:Returns a length two vector (c,\gamma)
, where
c\in\mathbb{R}
is the location parameter and \gamma >0
is the scale parameter.
weight_function="threshold"
:Returns a length M-1
vector (r_1,...,r_{M-1})
, where
r_1,...,r_{M-1}
are the threshold values.
weight_function="exogenous"
:Returns numeric(0)
.
No argument checks!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.