View source: R/generateParams.R
| random_weightpars | R Documentation |
random_weightpars generates random transition weight parameter values
random_weightpars(
M,
weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold",
"exogenous"),
weightfun_pars = NULL,
AR_constraints = NULL,
mean_constraints = NULL,
weight_constraints = NULL,
weight_scale
)
M |
a positive integer specifying the number of regimes |
weight_function |
What type of transition weights
See the vignette for more details about the weight functions. |
weightfun_pars |
|
AR_constraints |
a size |
mean_constraints |
Restrict the mean parameters of some regimes to be identical? Provide a list of numeric vectors
such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if
|
weight_constraints |
a list of two elements, |
weight_scale |
For...
|
Returns a numeric vector ...
weight_function == "relative_dens":a length M-1 vector (\alpha_1,...,\alpha_{M-1}).
weight_function == "logistic":a length two vector (c,\gamma),
where c\in\mathbb{R} is the location parameter and \gamma >0 is the scale parameter.
weight_function == "mlogit":a length ((M-1)k\times 1) vector (\gamma_1,...,\gamma_{M-1}),
where \gamma_m (k\times 1), m=1,...,M-1 contains the mlogit-regression coefficients of the mth
regime. Specifically, for switching variables with indices in I\subset\lbrace 1,...,d\rbrace, and with
\tilde{p}\in\lbrace 1,...,p\rbrace lags included, \gamma_m contains the coefficients for the vector
z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where
\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), i\in I. So k=1+|I|\tilde{p}
where |I| denotes the number of elements in I.
weight_function == "exponential":a length two vector (c,\gamma),
where c\in\mathbb{R} is the location parameter and \gamma >0 is the scale parameter.
weight_function == "threshold":a length M-1 vector (r_1,...,r_{M-1}),
where r_1,...,r_{M-1} are the threshold values in an increasing order.
weight_function == "exogenous":of length zero.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.