Description Usage Arguments Details Value References Examples
MLE.matching
returns the maximum likelihood estimator (MLE) for the data.
1 2 3 4 5 6 7 | MLE.matching(
x,
size,
CI.method = "asymptotic",
conf.level = 0.95,
bootstrap.sims = 10^3
)
|
x |
A vector of numeric values to be used as arguments for the mass function |
size |
The size parameter for the generalised matching distribution (number of objects to match) |
CI.method |
The method used to compute the confidence interval ('asymptotic' or 'bootstrap') |
conf.level |
The width of the CI |
bootstrap.sims |
The number of bootstrap simulations used in the bootstrap confidence interval |
This function computes the maximum likelihood estimator (MLE) from data consisting of IID samples from the generalised matching distribution. Further details on the distribution can be found in the following paper:
If all inputs are correctly specified (i.e., parameters are in allowable range) then the output will be a list of outputs for the MLE
O'Neill, B. (2021) A generalised matching distribution for the problem of coincidences.
1 2 3 4 5 6 | X <- rmatching(20, 5, prob=.1)
# For comparison
# MASS::fitdistr(X, dmatching, start=list(prob=.5), size=5, lower=c(prob=0), upper=c(prob=1))
MLE.matching(X, 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.