| gnlht | R Documentation | 
This function calculates linear/nonlinear contrasts of model parameters and returns their estimates with delta standard errors.
## S3 method for class 'numeric'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
## S3 method for class 'lm'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
## S3 method for class 'nls'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
## S3 method for class 'lme'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
## S3 method for class 'nlme'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
## S3 method for class 'drc'
gnlht(object, func, const, vcov.,
            parameterNames, dfr, ...)
object | 
 a named vector of parameter estimates, or a model object for which there are coef and vcov methods. The estimates are assumed as asymptotically normally distributed with covariance matrix returned by vcov. or passed as an argument  | 
func | 
 a list of functions or quoted strings that are the functions of the parameter estimates to be evaluated  | 
const | 
 If necessary, a dataframe whose columns are the constants to be used in the calculations above. For each row of this dataframe, the functions above are evaluated  | 
vcov. | 
 a variance-covariance matrix, or a function to calculate it from the model object  | 
parameterNames | 
 a character vector with namings for the parameters to be combined  | 
dfr | 
 number of degrees of freedom  | 
... | 
 Additional arguments  | 
Methods are given for several types of model fitting objects (lm, nls, lme, nlme, drc), from where model coefficients and a variance-covariance matrix are automatically retrieved. For other cases, a named vector of model parameters and a variance-covariance matrix can be provided as arguments to the 'gnlht()' function.
Returns a data.frame
Andrea Onofri
data(metamitron)
#Fit nls grouped model
modNlin <- nls(Conc ~ A[Herbicide] * exp(-k[Herbicide] * Time),
               start=list(A=rep(100, 4), k=rep(0.06, 4)),
               data=metamitron)
summary(modNlin)
# Compare parameters
funList <- list(~k1 - k2, ~k1 - k3, ~k1 - k4)
gnlht(modNlin, funList)
# Combine parameters
funList <- list(~ -log(0.5)/k1, ~ -log(0.5)/k2,
                ~ -log(0.5)/k3, ~ -log(0.5)/k4)
gnlht(modNlin, funList)
# Combine more flexibly
funList <- list(~ -log(prop)/k1, ~ -log(prop)/k2,
                ~ -log(prop)/k3, ~ -log(prop)/k4)
gnlht(modNlin, funList, const = data.frame(prop = 0.5))
funList <- list(~ -log(prop)/k1, ~ -log(prop)/k2,
                ~ -log(prop)/k3, ~ -log(prop)/k4)
gnlht(modNlin, funList, const = data.frame(prop = c(0.7, 0.5, 0.3)))
# Other possibilities
funList <- list(~ (k2 - k1)/(k1 * k2) * log(prop),
                ~ (k3 - k1)/(k1 * k3) * log(prop),
                ~ (k4 - k1)/(k1 * k4) * log(prop))
gnlht(modNlin, funList, const = data.frame(prop = c(0.7, 0.5, 0.3)))
# Predictions
funList <- list(~ A1 * exp (- k1 * Time), ~ A2 * exp (- k2 * Time),
                ~ A3 * exp (- k3 * Time), ~ A4 * exp (- k4 * Time))
propdF <- data.frame(Time = seq(0, 67, 1))
func <- funList
const <- propdF
pred <- gnlht(modNlin, funList, const = propdF)
head(pred)
tail(pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.