statgenGWAS: Genome Wide Association Studies

Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.

Package details

AuthorBart-Jan van Rossum [aut, cre] (<https://orcid.org/0000-0002-8673-2514>), Willem Kruijer [aut] (<https://orcid.org/0000-0001-7179-1733>), Fred van Eeuwijk [ctb] (<https://orcid.org/0000-0003-3672-2921>), Martin Boer [ctb] (<https://orcid.org/0000-0002-1879-4588>), Marcos Malosetti [ctb] (<https://orcid.org/0000-0002-8150-1397>), Daniela Bustos-Korts [ctb] (<https://orcid.org/0000-0003-3827-6726>), Emilie Millet [ctb] (<https://orcid.org/0000-0002-2913-4892>), Joao Paulo [ctb] (<https://orcid.org/0000-0002-4180-0763>), Maikel Verouden [ctb] (<https://orcid.org/0000-0002-4893-3323>), Ron Wehrens [ctb] (<https://orcid.org/0000-0002-8798-5599>), Choazhi Zheng [ctb] (<https://orcid.org/0000-0001-6030-3933>)
MaintainerBart-Jan van Rossum <bart-jan.vanrossum@wur.nl>
LicenseGPL-3
Version1.0.9
URL https://biometris.github.io/statgenGWAS/index.html https://github.com/Biometris/statgenGWAS/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("statgenGWAS")

Try the statgenGWAS package in your browser

Any scripts or data that you put into this service are public.

statgenGWAS documentation built on Oct. 13, 2022, 5:05 p.m.