This document demonstrates how to use stdmod_lavaan() from
the package stdmod to compute the
standardized moderation effect in a path model fitted by lavaan::sem().
More about this package can be found
in vignette("stdmod", package = "stdmod")
or at https://sfcheung.github.io/stdmod/.
library(stdmod) # For computing the standardized moderation effect conveniently library(lavaan) # For doing path analysis in lavaan.
data(test_mod1) round(head(test_mod1, 3), 3) #> dv iv mod med cov1 cov2 #> 1 23.879 -0.133 -0.544 10.310 -0.511 -0.574 #> 2 23.096 1.456 1.539 11.384 0.094 -0.264 #> 3 23.201 0.319 1.774 9.615 -0.172 0.488
This test data set has 300 cases, six variables, all continuous.
lavaan::sem()The product term can be formed manually or by the colon operator, :.
stdmod_lavaan() will work in both cases.
This is the model to be tested:
mod <- " med ~ iv + mod + iv:mod + cov1 dv ~ med + cov2 " fit <- sem(mod, test_mod1, fixed.x = FALSE) summary(fit) #> lavaan 0.6-21.2434 ended normally after 1 iteration #> #> Estimator ML #> Optimization method NLMINB #> Number of model parameters 23 #> #> Number of observations 300 #> #> Model Test User Model: #> #> Test statistic 1.058 #> Degrees of freedom 5 #> P-value (Chi-square) 0.958 #> #> Parameter Estimates: #> #> Standard errors Standard #> Information Expected #> Information saturated (h1) model Structured #> #> Regressions: #> Estimate Std.Err z-value P(>|z|) #> med ~ #> iv 0.221 0.030 7.264 0.000 #> mod 0.104 0.030 3.489 0.000 #> iv:mod 0.257 0.025 10.169 0.000 #> cov1 0.104 0.025 4.099 0.000 #> dv ~ #> med 0.246 0.041 5.962 0.000 #> cov2 0.191 0.023 8.324 0.000 #> #> Covariances: #> Estimate Std.Err z-value P(>|z|) #> iv ~~ #> mod 0.481 0.063 7.606 0.000 #> iv:mod -0.149 0.059 -2.501 0.012 #> cov1 -0.033 0.058 -0.575 0.565 #> cov2 -0.071 0.059 -1.216 0.224 #> mod ~~ #> iv:mod -0.180 0.062 -2.923 0.003 #> cov1 -0.060 0.059 -1.010 0.313 #> cov2 -0.107 0.061 -1.763 0.078 #> iv:mod ~~ #> cov1 -0.051 0.061 -0.837 0.403 #> cov2 0.063 0.063 1.001 0.317 #> cov1 ~~ #> cov2 0.071 0.061 1.158 0.247 #> #> Variances: #> Estimate Std.Err z-value P(>|z|) #> .med 0.201 0.016 12.247 0.000 #> .dv 0.169 0.014 12.247 0.000 #> iv 0.954 0.078 12.247 0.000 #> mod 1.017 0.083 12.247 0.000 #> iv:mod 1.088 0.089 12.247 0.000 #> cov1 1.039 0.085 12.247 0.000 #> cov2 1.076 0.088 12.247 0.000
The results show that mod significantly moderates the effect of
iv on med.
As in the case of regression, the coefficient of iv:mod in
the standardized solution is not the desired standardized coefficient because
it standardizes the product term.
standardizedSolution(fit)[3, ] #> lhs op rhs est.std se z pvalue ci.lower ci.upper #> 3 med ~ iv:mod 0.466 0.043 10.842 0 0.382 0.55
After fitting the path model by lavaan::lavaan(), we can use stdmod_lavaan()
to compute the standardized moderation effect using the standard deviations
of the focal variable, the moderator, and the outcome variable
(Cheung, Cheung, Lau, Hui, & Vong, 2022).
The minimal arguments are:
fit: The output from lavaan::lavaan() and its wrappers, such
as lavaan::sem().x: The focal variable, the variable with its effect on the
outcome variable being moderated.y: The outcome variable.w: The moderator.x_w: The product term.fit_iv_mod_std <- stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod") fit_iv_mod_std #> #> Call: #> stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod") #> #> Variable #> Focal Variable iv #> Moderator mod #> Outcome Variable med #> Product Term iv:mod #> #> lhs op rhs est se z pvalue ci.lower ci.upper #> Original med ~ iv:mod 0.257 0.025 10.169 0 0.208 0.307 #> Standardized med ~ iv:mod 0.440 NA NA NA NA NA
The standardized moderation effect of mod on the iv-med path is
0.440.
stdmod_lavaan() can also be used to form nonparametric bootstrap
confidence interval for the standardized moderation effect.
There are two approaches to do this. First, if bootstrap confidence intervals was requested when fitting the model, the stored bootstrap estimates will be used. This is efficient because there is no need to do bootstrapping again.
We fit the model again, with bootstrapping:
fit <- sem(mod, test_mod1, fixed.x = FALSE, se = "boot", bootstrap = 2000, iseed = 987543)
If bootstrapping has been done when fitting the model,
just adding boot_ci = TRUE is enough to request
nonparametric percentile bootstrap confidence interval:
fit_iv_mod_std_ci <- stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod", boot_ci = TRUE) fit_iv_mod_std_ci #> #> Call: #> stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod", #> boot_ci = TRUE) #> #> Variable #> Focal Variable iv #> Moderator mod #> Outcome Variable med #> Product Term iv:mod #> #> lhs op rhs est se z pvalue ci.lower ci.upper #> Original med ~ iv:mod 0.257 0.035 7.298 0 0.184 0.322 #> Standardized med ~ iv:mod 0.440 NA NA NA 0.322 0.539 #> #> Confidence interval of standardized moderation effect: #> - Level of confidence: 95% #> - Bootstrapping Method: Nonparametric #> - Type: Percentile #> - Number of bootstrap samples requests: #> - Number of bootstrap samples with valid results: 2000 #> #> NOTE: Bootstrapping conducted by the method in 0.2.7.5 or later. To use #> the method in the older versions for reproducing previous results, set #> 'use_old_version' to 'TRUE'.
The 95% confidence interval of the standardized moderation effect is 0.322 to 0.539.
The second approach, not covered here, uses
do_boot()
from
the manymome package.
to generate bootstrap estimates. To use the stored bootstrap
estimates, set boot_out to the output of do_boot().
The stored bootstrap estimates will then be used. This method
can be used when non-bootstrapping confidence intervals are
needed when fitting the model.
The function stdmod_lavaan() can be used for more complicated path models.
The computation of the standardized moderation effect in a path model depends
only on the standard deviations of the three variables involved
(x, w, and y).
The computation of the standardized moderation effect is based on the simple formula presented in the following manuscript, using the standard deviations of the outcome variable, focal variable, and the moderator:
Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022) Improving an old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502-505. https://doi.org/10.1037/hea0001188.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.