This is an interface for the 'Python' package 'StepMix'. It is a 'Python' package following the scikit-learn API for model-based clustering and generalized mixture modeling (latent class/profile analysis) of continuous and categorical data. 'StepMix' handles missing values through Full Information Maximum Likelihood (FIML) and provides multiple stepwise Expectation-Maximization (EM) estimation methods based on pseudolikelihood theory. Additional features include support for covariates and distal outcomes, various simulation utilities, and non-parametric bootstrapping, which allows inference in semi-supervised and unsupervised settings.
Package details |
|
---|---|
Author | Éric Lacourse [aut], Roxane de la Sablonnière [aut], Charles-Édouard Giguère [aut, cre], Sacha Morin [aut], Robin Legault [aut], Félix Laliberté [aut], Zsusza Bakk [ctb] |
Maintainer | Charles-Édouard Giguère <ce.giguere@gmail.com> |
License | GPL-2 |
Version | 0.1.2 |
URL | https://github.com/Labo-Lacourse/StepMixr |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.