cancor_eof | R Documentation |
Performs Canonical Correlation Analysis (CCA) using Empirical Orthogonal Function analysis using in a dataframe or a stars object. The autoplot function can plot the outputs.
The variations are * 'cancor_eof.data.frame()' if the input is a dataframe * 'cancor_eof.stars()' if the input is a stars object * 'autoplot.cancoreof()' to plot the outputs.
cancor_eof(x, lag, n_eof, ...) ## S3 method for class 'data.frame' cancor_eof(x, lag = 7, n_eof = 10, values_df, ...) ## S3 method for class 'stars' cancor_eof(x, lag = 7, n_eof = 10, ...) ## S3 method for class 'cancoreof' autoplot( object, line_plot = TRUE, space_plot = TRUE, palette = "Spectral", xlab = "Time", ... )
x |
The dataframe or stars object. If it is a dataframe, then it should have the locations. |
lag |
Specifies the lag to be used. |
n_eof |
The number of EOFs to be used. |
... |
Other arguments currently ignored. |
values_df |
For dataframes: the dataframe of dimension |
object |
autoplot parameter: the output of the function ‘cancor_eof’. |
line_plot |
autoplot parameter: if set to |
space_plot |
autoplot parameter: if set to |
palette |
autoplot parameter: the color palette to use for plotting. |
xlab |
autoplot parameter:: he label on the x-axis for the line plot. |
A cancoreof object with CCA output, EOF output, original data and cancor object from 'stats'.
# Dataframe example data(SSTlonlatshort) data(SSTdatashort) cancor_df <- cancor_eof(x = SSTlonlatshort, lag = 7, n_eof = 8, values_df = SSTdatashort) autoplot(cancor_df) # Stars example library(dplyr) library(stars) # Create a stars object from a data frame precip_df <- NOAA_df_1990[NOAA_df_1990$proc == 'Precip', ] %>% filter(date >= "1992-02-01" & date <= "1992-02-28") precip <- precip_df[ ,c('lat', 'lon', 'date', 'z')] st_precip <- st_as_stars(precip, dims = c("lon", "lat", "date")) cancor_st <- cancor_eof(st_precip) autoplot(cancor_st, line_plot = TRUE, space_plot = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.