Nothing
#' #'Create example data for subscreen package with pbc data set
#' #'
#' #'
#'
#' library(survival)
#' library(dplyr)
#' utils::data(pbc, package = "survival")
#' ##generate categorical versions of some of the baseline covariates
#' pbc <- pbc %>%
#' dplyr::mutate(
#' ageg = dplyr::case_when(
#' age <= quantile(pbc$age, 0.33, na.rm = TRUE) ~ "Low",
#' age > quantile(pbc$age, 0.33, na.rm = TRUE) & age <= quantile(pbc$age, 0.66, na.rm = TRUE) ~"Middle",
#' age > quantile(pbc$age, 0.66, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' phosg = dplyr::case_when(
#' alk.phos<= quantile(pbc$alk.phos, 0.5, na.rm = TRUE) ~ "Low",
#' alk.phos > quantile(pbc$alk.phos, 0.5, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' albuming = dplyr::case_when(
#' albumin<= quantile(pbc$albumin, 0.33, na.rm = TRUE) ~ "Low",
#' albumin > quantile(pbc$albumin, 0.33, na.rm = TRUE) & albumin <= quantile(pbc$albumin, 0.66, na.rm = TRUE) ~"Middle",
#' albumin > quantile(pbc$albumin, 0.66, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' astg = dplyr::case_when(
#' ast<= quantile(pbc$ast, 0.33, na.rm = TRUE) ~ "Low",
#' ast > quantile(pbc$ast, 0.33, na.rm = TRUE) & ast<= quantile(pbc$ast, 0.66, na.rm = TRUE) ~"Middle",
#' ast > quantile(pbc$ast, 0.66, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' bilig = dplyr::case_when(
#' bili<= quantile(pbc$bili, 0.33, na.rm = TRUE) ~ "Low",
#' bili > quantile(pbc$bili, 0.33, na.rm = TRUE) & bili<= quantile(pbc$bili, 0.66, na.rm = TRUE) ~"Middle",
#' bili > quantile(pbc$bili, 0.66, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' cholg = dplyr::case_when(
#' chol<= quantile(pbc$chol, 0.5, na.rm = TRUE) ~ "Low",
#' chol > quantile(pbc$chol, 0.5, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' copperg = dplyr::case_when(
#' copper<= quantile(pbc$copper, 0.33, na.rm = TRUE) ~ "Low",
#' copper > quantile(pbc$copper, 0.33, na.rm = TRUE) & copper<= quantile(pbc$copper, 0.66, na.rm = TRUE) ~ "Middle",
#' copper > quantile(pbc$copper, 0.66, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' ascitesg = dplyr::case_when(
#' ascites == 1 ~ "Yes",
#' ascites == 0 ~ "No",
#' TRUE ~ "No data"
#' ),
#' plateletg = dplyr::case_when(
#' platelet<= quantile(pbc$platelets, 0.5, na.rm = TRUE) ~ "Low",
#' platelet > quantile(pbc$platelet, 0.5, na.rm = TRUE) ~ "High",
#' TRUE ~ "No data"
#' ),
#' spidersg = dplyr::case_when(
#' spiders == 1 ~ "Yes",
#' spiders == 0 ~ "No",
#' TRUE ~ "No data"
#' )
#' )
#' ## # eliminate treatment NAs#
#'
#' pbcdat <- pbc[!is.na(pbc$trt), ]
#' # # PFS and OS endpoints
#' set.seed(2006)##
#' pbcdat$'event.pfs' <- sample(c(0, 1), dim(pbcdat)[1], replace = TRUE)
#' pbcdat$'timepfs' <- sample(1:5000, dim(pbcdat)[1], replace = TRUE)#
#' pbcdat$'event.os' <- pbcdat$event
#' pbcdat$'timeos' <- pbcdat$time##
#' #variable importance for OS for the created categorical variables
#' # (higher is more important, also works for numeric variables)
#'
#' #define function the eval_function()
#'
#' #Attention: The eval_function ALWAYS needs to return a dataframe with one row.
#' # Include exception handling, like if(N1>0 && N2>0) hr <- exp(coxph(...) )#
#' # to avoid program abort due to errors
#' hazardratio <- function(D) {
#' HRpfs <- tryCatch(
#' exp(coxph(Surv(D$timepfs, D$event.pfs) ~ D$trt )$coefficients[[1]]),
#' warning = function(w) {NA}
#' )
#' HRpfs <- 1/HRpfs
#' HR.pfs <- round(HRpfs, 2)
#' HR.pfs[HR.pfs > 10] <- 10
#' HR.pfs[HR.pfs < 0.00001] <- 0.00001
#' HRos <- tryCatch(
#' exp(coxph(Surv(D$timeos, D$event.os) ~ D$trt )$coefficients[[1]]),
#' warning = function(w) {NA}
#' )
#' HRos <- 1/HRos
#' HR.os <- round(HRos, 2)
#' HR.os[HR.os > 10] <- 10
#' HR.os[HR.os < 0.00001] <- 0.00001
#' data.frame(
#' HR.pfs,
#' HR.os
#' )
#' }
#' # # Variable importance
#' pbcdat$status <- ifelse(pbcdat$status == 0, 0, 1)
#' importance <- subscreenvi(
#' data = pbcdat,
#' y = 'time',
#' cens = 'status',
#' trt = 'trt',
#' x = c("sex", "ageg", "phosg",
#' "albuming", "astg", "bilig",
#' "cholg", "copperg", "ascitesg",
#' "plateletg","spidersg"
#' )
#' )
#'
#' results <- subscreencalc(
#' data = pbcdat,
#' eval_function = hazardratio,
#' subjectid = "id",
#' factors = c("sex", "ageg", "phosg",
#' "albuming", "astg", "bilig",
#' "cholg", "copperg", "ascitesg",
#' "plateletg","spidersg"
#' ),
#' use_complement = FALSE,
#' factorial = FALSE)
#'
#' results_factorial_true <- subscreencalc(
#' data = pbcdat,
#' eval_function = hazardratio,
#' subjectid = "id",
#' factors = c("sex", "ageg", "phosg",
#' "albuming", "astg", "bilig",
#' "cholg", "copperg", "ascitesg",
#' "plateletg","spidersg"
#' ),
#' use_complement = FALSE,
#' factorial = TRUE
#' )
#'
#' results_factorial_complement_true <- subscreencalc(
#' data = pbcdat,
#' eval_function = hazardratio,
#' subjectid = "id",
#' factors = c("sex", "ageg", "phosg",
#' "albuming", "astg", "bilig",
#' "cholg", "copperg", "ascitesg",
#' "plateletg","spidersg"
#' ),
#' use_complement = TRUE,
#' factorial = TRUE
#' )
#'
#' results_complement_true <- subscreencalc(
#' data = pbcdat,
#' eval_function = hazardratio,
#' subjectid = "id",
#' factors = c("sex", "ageg", "phosg",
#' "albuming", "astg", "bilig",
#' "cholg", "copperg", "ascitesg",
#' "plateletg","spidersg"
#' ),
#' use_complement = TRUE,
#' factorial = FALSE
#' )
#'
#'
#' #save
#' save(results, file = "data/results.rda")
#' save(results_factorial_true, file = "data/results_factorial_true.rda")
#' save(results_factorial_complement_true, file = "data/results_factorial_complement_true.rda")
#' save(results_complement_true, file = "data/results_complement_true.rda")
#' save(importance, file = "data/importance.rda")
#'
#' # studies <- read.csv("data/studies.csv")
#' # save(studies, file = "data/studies.rda")
#'
#'
#' # ##save
#' # saveRDS(results, "data/results.rds", version = 2)
#' # saveRDS(results_factorial_true, "data/results_factorial_true.rds", version = 2)
#' # saveRDS(results_factorial_complement_true, "data/results_factorial_complement_true.rds", version = 2)
#' # saveRDS(results_complement_true, "data/results_complement_true.rds", version = 2)
#' #
#' # saveRDS(importance, "data/importance.rds", version = 2)
#' #
#' # # studies <- read.csv("data/studies.csv")#
#' # #saveRDS(studies, "data/studies.rds", version = 2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.