The sufficient forecasting (SF) method is implemented by this package for a single time series forecasting using many predictors and a possibly nonlinear forecasting function. Assuming that the predictors are driven by some latent factors, the SF first conducts factor analysis and then performs sufficient dimension reduction on the estimated factors to derive predictive indices for forecasting. The package implements several dimension reduction approaches, including principal components (PC), sliced inverse regression (SIR), and directional regression (DR). Methods for dimension reduction are as described in: Fan, J., Xue, L. and Yao, J. (2017) <doi:10.1016/j.jeconom.2017.08.009>, Luo, W., Xue, L., Yao, J. and Yu, X. (2022) <doi:10.1093/biomet/asab037> and Yu, X., Yao, J. and Xue, L. (2022) <doi:10.1080/07350015.2020.1813589>.
Package details |
|
---|---|
Author | Jianqing Fan [aut], Jing Fu [aut, cre], Wei Luo [aut], Lingzhou Xue [aut], Jiawei Yao [aut], Xiufan Yu [aut] |
Maintainer | Jing Fu <jingfu991224@outlook.com> |
License | GPL (>= 3) |
Version | 0.1.0 |
URL | https://github.com/JingFu1224/sufficientForecasting |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.