SF | R Documentation |
Select a method from PC, SIR and DR to do point prediction
SF( y, X, newX = NULL, K = "default", L = 1, method = "SIR.LM", hyperparameter = list() )
y |
Response, T by 1 matrix |
X |
Predictors, p by T matrix |
newX |
New predictors, a vector contains p entries (or |
K |
The number of common factors (default = obtained by
|
L |
The number of predictive indices, L is required to be no greater than K (default = 1) |
method |
Select one from |
hyperparameter |
A list of parameters for the corresponding method
|
Out-of-sample forecast for newX
; or in-sample forecast for the last
observed data point if newX
is NULL
Fan, J., Xue, L. and Yao, J. (2017), Sufficient forecasting using factor models, Journal of econometrics 201(2), 292–306
Luo, W., Xue, L., Yao, J. and Yu, X. (2022), Inverse moment methods for sufficient forecasting using high-dimensional predictors, Biometrika 109(2), 473–487.
Yu, X., Yao, J. and Xue, L. (2022), Nonparametric estimation and conformal inference of the sufficient forecasting with a diverging number of factors, Journal of Business & Economic Statistics 40(1), 342–354.
utils::data(dataExample,package = "sufficientForecasting") SF(dataExample$y,dataExample$X,method = "SIR.LLM", hyperparameter = list(nslices = 5,discretization = TRUE)) SF(dataExample$y,dataExample$X,dataExample$newX,method = "DR") SF(dataExample$y,dataExample$X,dataExample$newX,method = "PC")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.