sp | R Documentation |
sp
is the main function for computing the support points in Mak and Joseph (2018). Current options include support points on standard distributions (specified via dist.str
) or support points for reducing big data (specified via dist.samp
). For big data reduction, weights on each data point can be specified via wts
.
sp(n, p, ini=NA,
dist.str=NA, dist.param=vector("list",p),
dist.samp=NA, scale.flg=TRUE, wts=NA, bd=NA,
num.subsamp=ifelse(any(is.na(dist.samp)),
max(10000,10*n),min(10000,nrow(dist.samp))),
rnd.flg=ifelse(any(is.na(dist.samp)),
TRUE,ifelse(num.subsamp<=10000,FALSE,TRUE)),
iter.max=max(250,iter.min), iter.min=50,
tol=1e-10, par.flg=TRUE, n0=n*p)
n |
Number of support points. |
p |
Dimension of sample space. |
ini |
An |
dist.str |
A |
dist.param |
A
|
dist.samp |
An |
scale.flg |
Should the big data |
wts |
Weights on each data point in |
bd |
A |
num.subsamp |
Batch size for resampling. For distributions, the default is |
rnd.flg |
Should the big data be randomly subsampled? |
iter.max |
Maximum iterations for optimization. |
iter.min |
Minimum iterations for optimization. |
tol |
Error tolerance for optimization. |
par.flg |
Should parallelization be used? |
n0 |
Momentum parameter for optimization. |
sp |
An |
ini |
An |
Mak, S. and Joseph, V. R. (2018). Support points. Annals of Statistics, 46(6A):2562-2592.
## Not run:
#############################################################
# Support points on distributions
#############################################################
#Generate 25 SPs for the 2-d i.i.d. N(0,1) distribution
n <- 25 #number of points
p <- 2 #dimension
D <- sp(n,p,dist.str=rep("normal",p))
x1 <- seq(-3.5,3.5,length.out=100) #Plot contours
x2 <- seq(-3.5,3.5,length.out=100)
z <- exp(-outer(x1^2,x2^2,FUN="+")/2)
contour.default(x=x1,y=x2,z=z,drawlabels=FALSE,nlevels=10)
points(D$sp,pch=16,cex=1.25,col="red")
#############################################################
# Generate 50 SPs for the 2-d i.i.d. Beta(2,4) distribution
#############################################################
n <- 50
p <- 2
dist.param <- vector("list",p)
for (l in 1:p){
dist.param[[l]] <- c(2,4)
}
D <- sp(n,p,dist.str=rep("beta",p),dist.param=dist.param)
x1 <- seq(0,1,length.out=100) #Plot contours
x2 <- seq(0,1,length.out=100)
z <- matrix(NA,nrow=100,ncol=100)
for (i in 1:100){
for (j in 1:100){
z[i,j] <- dbeta(x1[i],2,4) * dbeta(x2[j],2,4)
}
}
contour.default(x=x1,y=x2,z=z,drawlabels=FALSE,nlevels=10 )
points(D$sp,pch=16,cex=1.25,col="red")
#############################################################
# Generate 100 SPs for the 3-d i.i.d. Exp(1) distribution
#############################################################
n <- 100
p <- 3
D <- sp(n,p,dist.str=rep("exponential",p))
pairs(D$sp,xlim=c(0,5),ylim=c(0,5),pch=16)
#############################################################
# Support points for big data reduction: Franke's function
#############################################################
#Use modified Franke's function as posterior
franke2d <- function(xx){
if ((xx[1]>1)||(xx[1]<0)||(xx[2]>1)||(xx[2]<0)){
return(-Inf)
}
else{
x1 <- xx[1]
x2 <- xx[2]
term1 <- 0.75 * exp(-(9*x1-2)^2/4 - (9*x2-2)^2/4)
term2 <- 0.75 * exp(-(9*x1+1)^2/49 - (9*x2+1)/10)
term3 <- 0.5 * exp(-(9*x1-7)^2/4 - (9*x2-3)^2/4)
term4 <- -0.2 * exp(-(9*x1-4)^2 - (9*x2-7)^2)
y <- term1 + term2 + term3 + term4
return(2*log(y))
}
}
# library(MHadaptive) # Package archived, but you can use your favorite MCMC sampler
# #Generate MCMC samples
# li_func <- franke2d #Desired log-posterior
# ini <- c(0.5,0.5) #Initial point for MCMc
# NN <- 1e5 #Number of MCMC samples desired
# burnin <- NN/2 #Number of burn-in runs
# mcmc_franke <- Metro_Hastings(li_func, pars=ini, prop_sigma=0.05*diag(2),
# iterations=NN, burn_in=burnin)
data(mcmc_franke) # Loading MCMC sample from data
#Compute n SPs
n <- 100
D <- sp(n,2,dist.samp=mcmc_franke$trace)
#Plot SPs
oldpar <- par(mfrow=c(1,2))
x1 <- seq(0,1,length.out=100) #contours
x2 <- seq(0,1,length.out=100)
z <- matrix(NA,nrow=100,ncol=100)
for (i in 1:100){
for (j in 1:100){
z[i,j] <- franke2d(c(x1[i],x2[j]))
}
}
plot(mcmc_franke$trace,pch=4,col="gray",cex=0.75,
xlab="",ylab="",xlim=c(0,1),ylim=c(0,1)) #big data
points(D$sp,pch=16,cex=1.25,col="red")
contour.default(x=x1,y=x2,z=z,drawlabels=TRUE,nlevels=10) #contour
points(D$sp,pch=16,cex=1.25,col="red")
par(oldpar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.