survPen.fit | R Documentation |
Fits an (excess) hazard model. If penalized splines are present, the smoothing parameters are specified.
survPen.fit(
build,
data,
formula,
max.it.beta = 200,
beta.ini = NULL,
detail.beta = FALSE,
method = "LAML",
tol.beta = 1e-04
)
build |
list of objects returned by |
data |
an optional data frame containing the variables in the model |
formula |
formula object specifying the model |
max.it.beta |
maximum number of iterations to reach convergence in the regression parameters; default is 200 |
beta.ini |
vector of initial regression parameters; default is NULL, in which case the first beta will be |
detail.beta |
if TRUE, details concerning the optimization process in the regression parameters are displayed; default is FALSE |
method |
criterion used to select the smoothing parameters. Should be "LAML" or "LCV"; default is "LAML" |
tol.beta |
convergence tolerance for regression parameters; default is |
Object of class "survPen" (see survPenObject
for details)
library(survPen)
# standard spline of time with 4 knots
data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)
form <- ~ smf(time,knots=c(0,1,3,5))
t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)
# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)
# fitting
mod <- survPen.fit(model.c,data,form)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.