Implementation of methodology designed to perform: (i) variable selection, (ii) effect estimation, and (iii) uncertainty quantification, for high-dimensional survival data. Our method uses a spike-and-slab prior with Laplace slab and Dirac spike and approximates the corresponding posterior using variational inference, a popular method in machine learning for scalable conditional inference. Although approximate, the variational posterior provides excellent point estimates and good control of the false discovery rate. For more information see Komodromos et al. (2021) <arXiv:2112.10270>.
Package details |
|
---|---|
Author | Michael Komodromos |
Maintainer | Michael Komodromos <mk1019@ic.ac.uk> |
License | GPL-3 |
Version | 0.0-2 |
URL | https://github.com/mkomod/survival.svb |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.