Nothing
#' Estimation of the conditional distribution function of the response, given
#' the covariate under random censoring.
#' @description Computes the conditional survival probability P(T > y|Z = z)
#' @usage Beran(time, status, covariate, delta, x, y, kernel = "gaussian", bw,
#' lower.tail = FALSE)
#' @param time The survival time of the process.
#' @param status Censoring indicator of the total time of the process; 0 if the
#' total time is censored and 1 otherwise.
#' @param covariate Covariate values for obtaining estimates for the conditional
#' probabilities.
#' @param delta Censoring indicator of the covariate.
#' @param x The first time (or covariate value) for obtaining estimates for the
#' conditional probabilities.
#' If missing, 0 will be used.
#' @param y The total time for obtaining estimates for the conditional
#' probabilities.
#' @param kernel A character string specifying the desired kernel. See details
#' below for possible options.
#' Defaults to "gaussian" where the gaussian density kernel will be used.
#' @param bw A single numeric value to compute a kernel density bandwidth.
#' @param lower.tail logical; if FALSE (default), probabilities are
#' P(T > y|Z = z) otherwise, P(T <= y|Z = z).
#' @return Vector with the estimation of the conditional distribution function
#' of the response, given the covariate under random censoring.
#' @details Possible options for argument window are "gaussian", "epanechnikov",
#' "tricube", "boxcar",
#' "triangular", "quartic" or "cosine"
#' @references R. Beran. Nonparametric regression with randomly censored survival
#' data. Technical report, University of California, Berkeley, 1981.
#'
#' @examples
#' data("bladder4state")
#' b3state<-multidf(gap1=bladder4state$y1, event1=bladder4state$d1,
#' gap2=bladder4state$y2, status=bladder4state$d2,
#' size=bladder4state$size)
#'
#' head(b3state[[1]])
#'
#' ##P(T>y|size=3)
#' library(KernSmooth)
#'
#' obj0 <- b3state[[1]]
#'
#' h <- dpik(obj0$size)
#' Beran(time = obj0$time, status = obj0$status, covariate =obj0$size, x = 3,
#' y = 50, bw = h)
#'
#' ##P(T<=y|size=3)
#' Beran(time = obj0$time, status = obj0$status, covariate =obj0$size, x = 3,
#' y = 50, bw = h,
#' lower.tail = TRUE)
#'
#' @author Gustavo Soutinho and Luis Meira-Machado
#' @useDynLib survivalREC, .registration=TRUE
Beran <- function(
time,
status,
covariate,
delta,
x,
y,
kernel="gaussian",
bw,
lower.tail=FALSE
) {
spa <- NULL;
len <- length(time);
if ( missing(delta) ) delta <- rep(1, len);
res <- .C(
"SurvBeranKernel",
as.double(time),
as.integer(status),
as.double(covariate),
as.integer(delta),
as.integer(len),
as.double(y),
as.double(x),
as.double(bw),
as.character(kernel),
p = as.double(1),
PACKAGE="survivalREC"
)$p;
if (lower.tail == TRUE) res <- 1 - res;
return(res);
} # Beran
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.