Nothing
#' Nadaraya-Watson weights
#'
#' @description Computes the Nadaraya-Watson weights.
#' @usage NWW(covariate, x, kernel = "gaussian", bw)
#' @param covariate Covariate values for obtaining weights.
#' @param x Covariate value to compute the weight at.
#' @param kernel A character string specifying the desired kernel. See details
#' below for possible options.
#' Defaults to "gaussian" where the gaussian density kernel will be used.
#' @param bw A single numeric value to compute a kernel density bandwidth.
#'
#' @details Possible options for argument window are "gaussian", "epanechnikov",
#' "tricube", "boxcar", "triangular", "quartic" or "cosine".
#' @return A vector with Nadaraya-Watson weights.
#' @examples
#'
#' b3state<-multidf(gap1=bladder4state$y1, event1=bladder4state$d1,
#' gap2=bladder4state$y2, status=bladder4state$d2,
#' size=bladder4state$size)
#'
#' obj0 <- b3state[[1]]
#'
#' NWW(covariate = obj0$size, x=3, kernel = "gaussian", bw = 3)
#'
#' @author Gustavo Soutinho and Luis Meira-Machado
NWW <- function(
covariate,
x,
kernel="gaussian",
bw
) {
len <- length(covariate);
listg <- .C("NWWeightsKernel", as.double(covariate), as.integer(len),
as.double(x), as.double(bw), as.character(kernel),
weight = double(len), PACKAGE="survivalREC");
return(listg$weight);
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.