svars: Data-Driven Identification of SVAR Models

Implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) <doi:10.18637/jss.v097.i05>. Based on an existing VAR model object (provided by e.g. VAR() from the 'vars' package), the structural impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) <doi:10.1162/003465303772815727>), patterns of GARCH (Normadin, M., Phaneuf, L. (2004) <doi:10.1016/j.jmoneco.2003.11.002>), independent component analysis (Matteson, D. S, Tsay, R. S., (2013) <doi:10.1080/01621459.2016.1150851>), least dependent innovations (Herwartz, H., Ploedt, M., (2016) <doi:10.1016/j.jimonfin.2015.11.001>), smooth transition in variances (Luetkepohl, H., Netsunajev, A. (2017) <doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017) <doi:10.1016/j.jeconom.2016.06.002>)).

Package details

AuthorAlexander Lange [aut, cre], Bernhard Dalheimer [aut], Helmut Herwartz [aut], Simone Maxand [aut], Hannes Riebl [ctb]
MaintainerAlexander Lange <>
LicenseMIT + file LICENSE
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the svars package in your browser

Any scripts or data that you put into this service are public.

svars documentation built on March 19, 2021, 1:05 a.m.