R/RcppExports.R

Defines functions RcppDeLongPlacements RcppSVD RcppLinearTrendRM RcppMatKNNeighbors RcppDistSortedIndice RcppDistKNNIndice RcppKNNIndice RcppNeighborsNum RcppMatDistance RcppKNearestDistance RcppDistance RcppCMCTest RcppDeLongAUCConfidence RcppMeanCorConfidence RcppMeanCorSignificance RcppCorConfidence RcppCorSignificance RcppPartialCorTrivar RcppPartialCor RcppKendallCor RcppSpearmanCor RcppPearsonCor RcppArithmeticSeq RcppSumNormalize RcppAbsDiff RcppCumSum RcppRMSE RcppMAE RcppCovariance RcppVariance RcppSum RcppMax RcppMin RcppMean RcppMedian RcppLog RcppDigamma RcppCombine RcppFactorial MatNotNAIndice OptICparm OptThetaParm OptEmbedDim DetectMaxNumThreads RcppMultispatialCCM RcppCMC RcppPCM RcppCCM RcppIC4TS RcppMultiSimplex4TS RcppSMap4TS RcppSimplex4TS RcppFNN4TS RcppMVE4TS RcppIntersectionCardinality RcppSMapForecast RcppSimplexForecast RcppEmbed RcppLogisticMap

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

RcppLogisticMap <- function(x = 3.6, y = 3.72, z = 3.68, step = 20L, alpha_x = 0.625, alpha_y = 0.77, alpha_z = 0.55, beta_xy = 0.05, beta_xz = 0.05, beta_yx = 0.4, beta_yz = 0.4, beta_zx = 0.65, beta_zy = 0.65, escape_threshold = 1e10) {
    .Call(`_tEDM_RcppLogisticMap`, x, y, z, step, alpha_x, alpha_y, alpha_z, beta_xy, beta_xz, beta_yx, beta_yz, beta_zx, beta_zy, escape_threshold)
}

RcppEmbed <- function(vec, E = 3L, tau = 1L, style = 0L) {
    .Call(`_tEDM_RcppEmbed`, vec, E, tau, style)
}

RcppSimplexForecast <- function(source, target, E, tau, lib, pred, num_neighbors, dist_metric, dist_average) {
    .Call(`_tEDM_RcppSimplexForecast`, source, target, E, tau, lib, pred, num_neighbors, dist_metric, dist_average)
}

RcppSMapForecast <- function(source, target, E, tau, lib, pred, num_neighbors, theta, dist_metric, dist_average) {
    .Call(`_tEDM_RcppSMapForecast`, source, target, E, tau, lib, pred, num_neighbors, theta, dist_metric, dist_average)
}

RcppIntersectionCardinality <- function(source, target, E, tau, lib, pred, num_neighbors = 4L, n_excluded = 0L, dist_metric = 2L, threads = 8L, parallel_level = 0L) {
    .Call(`_tEDM_RcppIntersectionCardinality`, source, target, E, tau, lib, pred, num_neighbors, n_excluded, dist_metric, threads, parallel_level)
}

RcppMVE4TS <- function(x, y, lib, pred, E = 3L, tau = 1L, b = 4L, top = 3L, nvar = 3L, dist_metric = 2L, dist_average = TRUE, threads = 8L) {
    .Call(`_tEDM_RcppMVE4TS`, x, y, lib, pred, E, tau, b, top, nvar, dist_metric, dist_average, threads)
}

RcppFNN4TS <- function(vec, rt, eps, lib, pred, E, tau = 1L, dist_metric = 2L, threads = 8L, parallel_level = 0L) {
    .Call(`_tEDM_RcppFNN4TS`, vec, rt, eps, lib, pred, E, tau, dist_metric, threads, parallel_level)
}

RcppSimplex4TS <- function(source, target, lib, pred, E, b, tau = 1L, dist_metric = 2L, dist_average = TRUE, threads = 8L) {
    .Call(`_tEDM_RcppSimplex4TS`, source, target, lib, pred, E, b, tau, dist_metric, dist_average, threads)
}

RcppSMap4TS <- function(source, target, lib, pred, theta, E = 3L, tau = 1L, b = 4L, dist_metric = 2L, dist_average = TRUE, threads = 8L) {
    .Call(`_tEDM_RcppSMap4TS`, source, target, lib, pred, theta, E, tau, b, dist_metric, dist_average, threads)
}

RcppMultiSimplex4TS <- function(source, target, lib, pred, E, b, tau = 1L, dist_metric = 2L, dist_average = TRUE, threads = 8L) {
    .Call(`_tEDM_RcppMultiSimplex4TS`, source, target, lib, pred, E, b, tau, dist_metric, dist_average, threads)
}

RcppIC4TS <- function(source, target, lib, pred, E, b, tau = 1L, exclude = 0L, dist_metric = 2L, threads = 8L, parallel_level = 0L) {
    .Call(`_tEDM_RcppIC4TS`, source, target, lib, pred, E, b, tau, exclude, dist_metric, threads, parallel_level)
}

RcppCCM <- function(x, y, libsizes, lib, pred, E = 3L, tau = 0L, b = 4L, simplex = TRUE, theta = 0, threads = 8L, parallel_level = 0L, dist_metric = 2L, dist_average = TRUE, progressbar = FALSE) {
    .Call(`_tEDM_RcppCCM`, x, y, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, dist_metric, dist_average, progressbar)
}

RcppPCM <- function(x, y, z, libsizes, lib, pred, E, tau, b, simplex = TRUE, theta = 0, threads = 8L, parallel_level = 0L, cumulate = FALSE, dist_metric = 2L, dist_average = TRUE, progressbar = FALSE) {
    .Call(`_tEDM_RcppPCM`, x, y, z, libsizes, lib, pred, E, tau, b, simplex, theta, threads, parallel_level, cumulate, dist_metric, dist_average, progressbar)
}

RcppCMC <- function(x, y, libsizes, lib, pred, E, tau, b = 4L, r = 0L, dist_metric = 2L, threads = 8L, parallel_level = 0L, progressbar = FALSE) {
    .Call(`_tEDM_RcppCMC`, x, y, libsizes, lib, pred, E, tau, b, r, dist_metric, threads, parallel_level, progressbar)
}

RcppMultispatialCCM <- function(x, y, libsizes, E = 3L, tau = 0L, b = 4L, boot = 299L, seed = 42L, threads = 8L, parallel_level = 0L, dist_metric = 2L, dist_average = TRUE, progressbar = FALSE) {
    .Call(`_tEDM_RcppMultispatialCCM`, x, y, libsizes, E, tau, b, boot, seed, threads, parallel_level, dist_metric, dist_average, progressbar)
}

DetectMaxNumThreads <- function() {
    .Call(`_tEDM_DetectMaxNumThreads`)
}

OptEmbedDim <- function(Emat) {
    .Call(`_tEDM_OptEmbedDim`, Emat)
}

OptThetaParm <- function(Thetamat) {
    .Call(`_tEDM_OptThetaParm`, Thetamat)
}

OptICparm <- function(Emat) {
    .Call(`_tEDM_OptICparm`, Emat)
}

MatNotNAIndice <- function(mat, byrow = TRUE) {
    .Call(`_tEDM_MatNotNAIndice`, mat, byrow)
}

RcppFactorial <- function(n) {
    .Call(`_tEDM_RcppFactorial`, n)
}

RcppCombine <- function(n, k) {
    .Call(`_tEDM_RcppCombine`, n, k)
}

RcppDigamma <- function(x) {
    .Call(`_tEDM_RcppDigamma`, x)
}

RcppLog <- function(x, base = 10) {
    .Call(`_tEDM_RcppLog`, x, base)
}

RcppMedian <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMedian`, vec, NA_rm)
}

RcppMean <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMean`, vec, NA_rm)
}

RcppMin <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMin`, vec, NA_rm)
}

RcppMax <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMax`, vec, NA_rm)
}

RcppSum <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppSum`, vec, NA_rm)
}

RcppVariance <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppVariance`, vec, NA_rm)
}

RcppCovariance <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_tEDM_RcppCovariance`, vec1, vec2, NA_rm)
}

RcppMAE <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMAE`, vec1, vec2, NA_rm)
}

RcppRMSE <- function(vec1, vec2, NA_rm = FALSE) {
    .Call(`_tEDM_RcppRMSE`, vec1, vec2, NA_rm)
}

RcppCumSum <- function(vec) {
    .Call(`_tEDM_RcppCumSum`, vec)
}

RcppAbsDiff <- function(vec1, vec2) {
    .Call(`_tEDM_RcppAbsDiff`, vec1, vec2)
}

RcppSumNormalize <- function(vec, NA_rm = FALSE) {
    .Call(`_tEDM_RcppSumNormalize`, vec, NA_rm)
}

RcppArithmeticSeq <- function(from, to, length_out) {
    .Call(`_tEDM_RcppArithmeticSeq`, from, to, length_out)
}

RcppPearsonCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_tEDM_RcppPearsonCor`, y, y_hat, NA_rm)
}

RcppSpearmanCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_tEDM_RcppSpearmanCor`, y, y_hat, NA_rm)
}

RcppKendallCor <- function(y, y_hat, NA_rm = FALSE) {
    .Call(`_tEDM_RcppKendallCor`, y, y_hat, NA_rm)
}

RcppPartialCor <- function(y, y_hat, controls, NA_rm = FALSE, linear = FALSE, pinv_tol = 1e-10) {
    .Call(`_tEDM_RcppPartialCor`, y, y_hat, controls, NA_rm, linear, pinv_tol)
}

RcppPartialCorTrivar <- function(y, y_hat, control, NA_rm = FALSE, linear = FALSE, pinv_tol = 1e-10) {
    .Call(`_tEDM_RcppPartialCorTrivar`, y, y_hat, control, NA_rm, linear, pinv_tol)
}

RcppCorSignificance <- function(r, n, k = 0L) {
    .Call(`_tEDM_RcppCorSignificance`, r, n, k)
}

RcppCorConfidence <- function(r, n, k = 0L, level = 0.05) {
    .Call(`_tEDM_RcppCorConfidence`, r, n, k, level)
}

RcppMeanCorSignificance <- function(r, n, k = 0L) {
    .Call(`_tEDM_RcppMeanCorSignificance`, r, n, k)
}

RcppMeanCorConfidence <- function(r, n, k = 0L, level = 0.05) {
    .Call(`_tEDM_RcppMeanCorConfidence`, r, n, k, level)
}

RcppDeLongAUCConfidence <- function(cases, controls, direction, level = 0.05) {
    .Call(`_tEDM_RcppDeLongAUCConfidence`, cases, controls, direction, level)
}

RcppCMCTest <- function(cases, direction, level = 0.05, num_samples = 0L) {
    .Call(`_tEDM_RcppCMCTest`, cases, direction, level, num_samples)
}

RcppDistance <- function(vec1, vec2, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_tEDM_RcppDistance`, vec1, vec2, L1norm, NA_rm)
}

RcppKNearestDistance <- function(vec1, k, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_tEDM_RcppKNearestDistance`, vec1, k, L1norm, NA_rm)
}

RcppMatDistance <- function(mat, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_tEDM_RcppMatDistance`, mat, L1norm, NA_rm)
}

RcppNeighborsNum <- function(vec, radius, equal = FALSE, L1norm = FALSE, NA_rm = FALSE) {
    .Call(`_tEDM_RcppNeighborsNum`, vec, radius, equal, L1norm, NA_rm)
}

RcppKNNIndice <- function(embedding_space, target_idx, k, lib) {
    .Call(`_tEDM_RcppKNNIndice`, embedding_space, target_idx, k, lib)
}

RcppDistKNNIndice <- function(dist_mat, target_idx, k, lib) {
    .Call(`_tEDM_RcppDistKNNIndice`, dist_mat, target_idx, k, lib)
}

RcppDistSortedIndice <- function(dist_mat, lib, k, include_self = FALSE) {
    .Call(`_tEDM_RcppDistSortedIndice`, dist_mat, lib, k, include_self)
}

RcppMatKNNeighbors <- function(embeddings, lib, k, threads = 8L, L1norm = FALSE) {
    .Call(`_tEDM_RcppMatKNNeighbors`, embeddings, lib, k, threads, L1norm)
}

RcppLinearTrendRM <- function(vec, xcoord, ycoord, NA_rm = FALSE) {
    .Call(`_tEDM_RcppLinearTrendRM`, vec, xcoord, ycoord, NA_rm)
}

RcppSVD <- function(X) {
    .Call(`_tEDM_RcppSVD`, X)
}

RcppDeLongPlacements <- function(cases, controls, direction) {
    .Call(`_tEDM_RcppDeLongPlacements`, cases, controls, direction)
}

Try the tEDM package in your browser

Any scripts or data that you put into this service are public.

tEDM documentation built on Aug. 25, 2025, 5:12 p.m.