Nothing
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
htmltools::img( src = "tRigon_logo.png", alt = "logo", style = "position:absolute; top:0px; right:135px; height: 80px" )
params$session_info
features:
params$feature_vars
dependent variable:
params$dependent_var
groups / levels of dependent variable:
if (params$fi_method == "Classification") { print(params$groups) if (params$na_omit == TRUE) { print(paste0("Warning: dependent variable contains NAs. ", params$na_n, " values excluded.")) } } else if (params$fi_method == "Regression") { print(paste0("numeric variable for regression: ", params$dependent_var)) if (params$na_omit == TRUE) { print(paste0("Warning: dependent variable contains NAs. ", params$na_n, " values excluded.")) } }
feature importance method:
if (params$fi_method == "Classification") { # classification if (params$fi_model == "recursive feature elimination") { print(paste0("recursive feature elimination (RFE) with ", params$folds_n, "-fold cross-validation and ", params$repeats_n, " repeats for classification of groups of the dependent variable. Data is distributed in a random 80/20 split for training and testing.")) } else if (params$fi_model == "random forest") { print("random forest model for classification of the dependent variable.") } } else if (params$fi_method == "Regression") { # Regression if (params$fi_model == "recursive feature elimination") { print(paste0("recursive feature elimination (RFE) with ", params$folds_n, "-fold cross-validation and ", params$repeats_n, " repeats for regression of the dependent variable. Data is distributed in a random 80/20 split for training and testing.")) } else if (params$fi_model == "random forest") { print("random forest model for regression of the dependent variable.") } }
feature imbalance:
if (params$warning_data) { print(paste0("Warning: input vectors of unequal length - only complete rows can be analysed for feature importance. ", params$warning_data_n, " rows with missing data excluded.")) } else { print("no imbalance in feature vector data reported.") }
feature importance output:
params$fi_output
feature importance plot:
plot(params$fi_plot)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.