smooth_curve | R Documentation |
Draw smooth curves. The four regression methods include general linear regression, logistic regression, conditional logistic regression and cox proportional hazards regression.
smooth_curve( x, y, data, y_time = NULL, strata = NULL, adj = c(), fx = FALSE, k = c(), split_var = NULL, div = c() )
x |
A string. The independent variable to be summarized given as a string. |
y |
A string. The dependent variable to be summarized given as a string. |
data |
A data frame in which these variables exist. |
y_time |
A string. The survival time variable to be summarized given as a string. |
strata |
A string. The paired variable to be summarized given as a string. |
adj |
A vector of strings, default = |
fx |
Bool, default |
k |
A vector of integers, default |
split_var |
A string, default |
div |
A numeric vector, default |
An object about smooth curve.
## Load Mayo Clinic Primary Biliary Cirrhosis Data library(survival) library(tableeasy) data(pbc) ## Check variables head(pbc) ##The censored data is not discussed here pbc_full <- subset(pbc,status!=0) pbc_full$status <- pbc_full$status-1 ## Make categorical variables factors varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex') pbc_full[varsToFactor] <- lapply(pbc_full[varsToFactor], factor) ## Moderator variables adj_pbc <- c('age','alk.phos','ast') ## Smooth curve of General linear regression: gam <- smooth_curve(x='albumin', y='bili', adj=adj_pbc, data=pbc_full) plot(gam$gam,se=TRUE,rug=TRUE,shift=gam$shift) ## Smooth curve of logistic regression: gam <- smooth_curve(x = 'albumin', y = 'status', adj = adj_pbc, split_var ='age', div = c(45), data = pbc_full) plot(gam$gam[[1]],se=FALSE,rug=TRUE,xlim=c(2,4.5),ylab = 'Adjusted ln ORs for death') oldpar <- par(new=TRUE) plot(gam$gam[[2]],se=FALSE,rug=TRUE,xlim=c(2,4.5),ylab = 'Adjusted ln ORs for death',lty=2) on.exit(par(oldpar)) ## Smooth curve of conditional logistic regression: pbc_full <- data.frame(pbc_full,'ytime'=1) gam <- smooth_curve(x ='albumin', y_time = 'ytime', y = 'status', adj = adj_pbc, strata = 'trt', data = pbc_full) termplot(gam,term =c(1),col.term ="black",col.se = "black",se=TRUE,rug=FALSE, ylab="Log ORs for death") ## Smooth curve of Cox proportional hazards regression: gam <- smooth_curve(x ='albumin', y_time = 'time', y = 'status', adj = adj_pbc, data = pbc_full) termplot(gam,term =c(1),col.term ="black",col.se = "black",se=TRUE,rug=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.