Nothing
Code
adjust_numeric_calibration(tailor())
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions using method.
Code
adjust_numeric_calibration(tailor(), method = "isotonic")
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions using isotonic method.
Code
adjust_numeric_calibration(tailor(), method = hardhat::tune())
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions (method marked for optimization).
Code
fit(adjust_numeric_calibration(tailor()), mtcars, outcome = mpg, estimate = disp)
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions using method. [trained]
Code
adjust_numeric_calibration(tailor(), "boop")
Condition
Error in `adjust_numeric_calibration()`:
! `method` must be one of "linear", "isotonic", "isotonic_boot", or "none", not "boop".
Code
adjust_numeric_calibration(tailor(), "binary")
Condition
Error in `adjust_numeric_calibration()`:
! `method` must be one of "linear", "isotonic", "isotonic_boot", or "none", not "binary".
i Did you mean "linear"?
Code
fit(tlr, d_reg_calibration, outcome = y, estimate = y_pred)
Condition
Error in `fit()`:
! The calibration method cannot be a value of `tune()` at `fit()` time.
Code
fit(tlr, d_reg_calibration[0, ], outcome = y, estimate = y_pred)
Condition
Warning:
The calibration data has 0 rows. There is not enough data for calibration so `method` is changed from "linear" to "none".
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions using linear method. [trained]
Code
fit(tlr, d_reg_calibration[1, ], outcome = y, estimate = y_pred)
Condition
Warning:
The calibration data has 1 row. There is not enough data for calibration so `method` is changed from "linear" to "none".
Message
-- tailor ----------------------------------------------------------------------
A regression postprocessor with 1 adjustment:
* Re-calibrate numeric predictions using linear method. [trained]
Code
tlr_fit <- adjust_numeric_calibration(tailor(), method = "linear", FALSE)
Condition
Error in `adjust_numeric_calibration()`:
! All calibration arguments passed to `...` should have names.
Code
tlr_fit <- adjust_numeric_calibration(tailor(), method = "linear", FALSE,
select = TRUE)
Condition
Error in `adjust_numeric_calibration()`:
! All calibration arguments passed to `...` should have names.
Code
pred_fit <- fit(tlr, d_calibration_pred, outcome = y, estimate = y_pred)
Condition
Warning:
Too few unique observations for spline-based calibrator. Setting `smooth = FALSE`.
Warning in `glm.fit()`:
no observations informative at iteration 1
Warning:
glm.fit: algorithm did not converge
Warning:
The linear calibration failed. No calibration is applied.
i Error in fit$rank : object of type 'closure' is not subsettable
Code
y_fit <- fit(tlr, d_calibration_y, outcome = y, estimate = y_pred)
Condition
Warning:
The linear calibration failed. No calibration is applied.
i Error in mgcv::gam(f_model, data = .data, ...) : Not enough (non-NA) data to do anything meaningful
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.