Nothing
## roxygen2::roxygenise("C:/users/valen/onedrive/myrepo/r/tclust", load_code=roxygen2:::load_installed)
#' LG5data data
#'
#' A data set in dimension 10 with three clusters around affine subspaces
#' of common intrinsic dimension. A 10\% background noise is added uniformly
#' distributed in a rectangle containing the three main clusters.
#' @name LG5data
#' @docType data
#' @usage data(LG5data)
#' @format The first 10 columns are the variables. The last column is the true
#' classification vector where symbol "0" stands for the contaminating data points.
#' @examples
#' #--- EXAMPLE 1 ------------------------------------------
#' data (LG5data)
#' x <- LG5data[, 1:10]
#' clus <- rlg(x, d = c(2,2,2), alpha=0.1, trace=TRUE)
#' plot(x, col=clus$cluster+1)
#' @keywords datasets
NULL
#' M5data data
#'
#' A bivariate data set obtained from three normal bivariate distributions with
#' different scales and proportions 1:2:2. One of the components is very overlapped
#' with another one. A 10\% background noise is added uniformly distributed in a rectangle
#' containing the three normal components and not very overlapped with the three mixture
#' components. A precise description of the M5 data set can be found in
#' García-Escudero et al. (2008).
#'
#' @name M5data
#' @docType data
#' @usage data(M5data)
#' @format The first two columns are the two variables. The last column is the true
#' classification vector where symbol "0" stands for the contaminating data points.
#' @source García-Escudero, L.A.; Gordaliza, A.; Matrán, C. and Mayo-Iscar, A. (2008),
#' "A General Trimming Approach to Robust Cluster Analysis". Annals of Statistics,
#' Vol.36, pp. 1324-1345.
#' @examples
#' #--- EXAMPLE 1 ------------------------------------------
#' data (M5data)
#' x <- M5data[, 1:2]
#' clus <- tclust(x, k=3, alpha=0.1, nstart=200, niter1=3, niter2=17,
#' nkeep=10, opt="HARD", equal.weights=FALSE, restr.fact=50, trace=TRUE)
#' plot (x, col=clus$cluster+1)
#' @keywords datasets
NULL
#' Wholesale customers dataset
#'
#' The data set refers to clients of a wholesale distributor. It includes the annual
#' spending in monetary units on diverse product categories.
#'
#' @name wholesale
#' @docType data
#' @usage data(wholesale)
#' @format A data frame containing 440 observations in 8 variables (6 numerical and two categorical).
#' The variables are as follows:
#'
#' \itemize{
#' \item \code{Region} Customers' Region - Lisbon (coded as 1), Porto (coded as 2) or Other (coded as 3)
#' \item \code{Fresh} Annual spending on fresh products
#' \item \code{Milk} Annual spending on milk products
#' \item \code{Grocery} Annual spending on grocery products
#' \item \code{Frozen} Annual spending on frozen products
#' \item \code{Detergents} Annual spending on detergents and paper products
#' \item \code{Delicatessen} Annual spending on and delicatessen products
#' \item \code{Channel} Customers' Channel - Horeca (Hotel/Restaurant/Café) or
#' Retail channel. Horeca is coded as 1 and Retail channel is coded as 2
#' }
#'
#' @source Abreu, N. (2011). Analise do perfil do cliente Recheio e desenvolvimento de
#' um sistema promocional. Mestrado em Marketing, ISCTE-IUL, Lisbon.
#' url={https://api.semanticscholar.org/CorpusID:124027622}
#'
#' @examples
#' #--- EXAMPLE 1 ------------------------------------------
#' data (wholesale)
#' x <- wholesale[, -c(1, ncol(wholesale))]
#' clus <- tclust(x, k=3, alpha=0.1, nstart=200, niter1=3, niter2=17,
#' nkeep=10, opt="HARD", equal.weights=FALSE, restr.fact=50, trace=TRUE)
#' plot (x, col=clus$cluster+1)
#' plot(clus)
#' @keywords datasets
NULL
#' Pinus nigra dataset
#'
#' To study the growth of the wood mass in a cultivated forest of \emph{Pinus nigra}
#' located in the north of Palencia (Spain), a sample of 362 trees was studied.
#' The data set is made of measurements of heights (in meters), in variable "HT",
#' and diameters (in millimetres), in variable "Diameter", of these trees.
#' The presence of three linear groups can be guessed apart from a small group
#' of trees forming its own cluster with larger heights and diameters one isolated
#' tree with the largest diameter but small height. More details on the
#' interpretation of this dataset in García-Escudero et al (2010).
#'
#' @name pine
#' @docType data
#' @usage data(pine)
#' @format A data frame containing 362 observations in 2 variables.
#' The variables are as follows:
#'
#' \itemize{
#' \item \code{Diameter} Diameter
#' \item \code{HT} Height
#' }
#'
#' @references García-Escudero, L. A., Gordaliza, A., Mayo-Iscar, A., and San Martín, R. (2010).
#' Robust clusterwise linear regression through trimming.
#' \emph{Computational Statistics & Data Analysis}, 54(12), 3057--3069.
#'
#' @keywords datasets
NULL
#' Old Faithful Geyser Data
#'
#' A bivariate data set obtained from the Old Faithful Geyser, containing the
#' eruption length and the length of the previous eruption for 271 eruptions
#' of this geyser in minutes.
#'
#' @name geyser2
#' @docType data
#' @usage data(geyser2)
#' @format A data frame containing 272 observations in 2 variables.
#' The variables are as follows:
#'
#' \itemize{
#' \item \code{Eruption length} The eruption length in minutes.
#' \item \code{Previous eruption length} The length of the previous eruption in minutes.
#' }
#'
#' @source
#' This particular data structure can be obtained by applying the following code
#' to the "Old Faithful Geyser" (\code{faithful} data set (Härdle 1991) in the
#' package \code{datasets}):
#' \cr
#' \code{f1 <- faithful[,1]}\cr
#' \code{geyser2 <- cbind(f1[-length(f1)], f1[-1])}\cr
#' \code{colnames(geyser2) <- c("Eruption length",}\cr
#' \code{ "Previous eruption length")}
#
#' @references
#' García-Escudero, L.A. and Gordaliza, A. (1999).
#' Robustness properties of k-means and trimmed k-means. \emph{Journal of the American Statistical Assoc.}, Vol.94, No.447, 956--969.
#'
#' Härdle, W. (1991). \emph{Smoothing Techniques with Implementation in S.}, New York: Springer.
#'
#' @keywords datasets
NULL
#' Swiss banknotes data
#'
#' Six variables measured on 100 genuine and 100 counterfeit old Swiss 1000-franc
#' bank notes (Flury and Riedwyl, 1988).
#'
#' @name swissbank
#' @docType data
#' @usage data(swissbank)
#' @format A data frame containing 200 observations in 6 variables.
#' The variables are as follows:
#'
#' \itemize{
#' \item \code{Length} Length of the bank note
#' \item \code{Ht_Left} Height of the bank note, measured on the left
#' \item \code{Ht_Right} Height of the bank note, measured on the right
#' \item \code{IF_Lower} Distance of inner frame to the lower border
#' \item \code{IF_Upper} Distance of inner frame to the upper border
#' \item \code{Diagonal} Length of the diagonal
#' }
#'
#' @details
#' Observations 1--100 are the genuine bank notes and the other 100 observations are the counterfeit bank notes.
#'
#' @source
#' Flury, B. and Riedwyl, H. (1988). \emph{Multivariate Statistics, A Practical Approach}, Cambridge University Press.
#
#' @keywords datasets
NULL
#' Flea
#'
#' Flea-beetle measurements
#'
#' @name flea
#' @docType data
#' @usage data(flea)
#' @format A data frame with 74 rows and 7 variables: six explanatory and one response variable - \code{species}.
#' The variables are as follows:
#'
#' \itemize{
#' \item tars1: width of the first joint of the first tarsus in microns (the sum of measurements for both tarsi)
#' \item tars2: the same for the second joint
#' \item head: the maximal width of the head between the external edges of the eyes in 0.01 mm
#' \item ade1: the maximal width of the aedeagus in the fore-part in microns
#' \item ade2: the front angle of the aedeagus ( 1 unit = 7.5 degrees)
#' \item ade3: the aedeagus width from the side in microns
#' \item species, which species is being examined - \code{Concinna}, \code{Heptapotamica}, \code{Heikertingeri}
#' }
#'
#'
#' @references A. A. Lubischew (1962), On the Use of Discriminant Functions in Taxonomy, \emph{Biometrics}, \bold{18}4 pp.455--477.
#'
#' @examples
#' data(flea)
#' head(flea)
#'
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.