A common way of validating a biological assay for is through a procedure, where m levels of an analyte are measured with n replicates at each level, and if all m estimates of the coefficient of variation (CV) are less than some prespecified level, then the assay is declared validated for precision within the range of the m analyte levels. Two limitations of this procedure are: there is no clear statistical statement of precision upon passing, and it is unclear how to modify the procedure for assays with constant standard deviation. We provide tools to convert such a procedure into a set of m hypothesis tests. This reframing motivates the m:n:q procedure, which upon completion delivers a 100q% upper confidence limit on the CV. Additionally, for a postvalidation assay output of y, the method gives an ``effective standard deviation interval'' of log(y) plus or minus r, which is a 68% confidence interval on log(mu), where mu is the expected value of the assay output for that sample. Further, the m:n:q procedure can be straightforwardly applied to constant standard deviation assays. We illustrate these tools by applying them to a growth inhibition assay.
Package details 


Author  Michael C Sachs and Michael P Fay 
Date of publication  20161129 18:10:38 
Maintainer  Michael C Sachs <[email protected]> 
License  MIT + file LICENSE 
Version  0.1.0 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.