as.lda_c | Converts document-term matrix sparse matrix to 'lda_c' format |
BNS | BNS |
check_analogy_accuracy | Checks accuracy of word embeddings on the analogy task |
coherence | Coherence metrics for topic models |
Collocations | Collocations model. |
combine_vocabularies | Combines multiple vocabularies into one |
create_dtm | Document-term matrix construction |
create_tcm | Term-co-occurence matrix construction |
create_vocabulary | Creates a vocabulary of unique terms |
distances | Pairwise Distance Matrix Computation |
GloVe | re-export rsparse::GloVe |
ifiles | Creates iterator over text files from the disk |
itoken | Iterators (and parallel iterators) over input objects |
jsPCA_robust | (numerically robust) Dimension reduction via Jensen-Shannon... |
LatentDirichletAllocation | Creates Latent Dirichlet Allocation model. |
LatentSemanticAnalysis | Latent Semantic Analysis model |
movie_review | IMDB movie reviews |
normalize | Matrix normalization |
perplexity | Perplexity of a topic model |
prepare_analogy_questions | Prepares list of analogy questions |
print.text2vec_vocabulary | Printing Vocabulary |
prune_vocabulary | Prune vocabulary |
reexports | Objects exported from other packages |
RelaxedWordMoversDistance | Creates Relaxed Word Movers Distance (RWMD) model |
similarities | Pairwise Similarity Matrix Computation |
split_into | Split a vector for parallel processing |
text2vec | text2vec |
TfIdf | TfIdf |
tokenizers | Simple tokenization functions for string splitting |
vectorizers | Vocabulary and hash vectorizers |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.