step_clean_names: Clean Variable Names

View source: R/clean_names.R

step_clean_namesR Documentation

Clean Variable Names

Description

step_clean_names() creates a specification of a recipe step that will clean variable names so the names consist only of letters, numbers, and the underscore.

Usage

step_clean_names(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  clean = NULL,
  skip = FALSE,
  id = rand_id("clean_names")
)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose which variables are affected by the step. See recipes::selections() for more details.

role

Not used by this step since no new variables are created.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

clean

A named character vector to clean variable names. This is NULL until computed by recipes::prep.recipe().

skip

A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()? While all operations are baked when recipes::prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = FALSE.

id

A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble with columns terms (the new clean variable names) and value (the original variable names).

Case weights

The underlying operation does not allow for case weights.

See Also

step_clean_levels(), recipes::step_factor2string(), recipes::step_string2factor(), recipes::step_regex(), recipes::step_unknown(), recipes::step_novel(), recipes::step_other()

Other Steps for Text Cleaning: step_clean_levels()

Examples


library(recipes)
data(airquality)

air_tr <- tibble(airquality[1:100, ])
air_te <- tibble(airquality[101:153, ])

rec <- recipe(~., data = air_tr)

rec <- rec %>%
  step_clean_names(all_predictors())
rec <- prep(rec, training = air_tr)
tidy(rec, number = 1)

bake(rec, air_tr)
bake(rec, air_te)


textrecipes documentation built on Nov. 16, 2023, 5:06 p.m.