| .fit.quantile_rf | R Documentation | 
tidyfitFits a nonlinear quantile regression forest on a 'tidyFit' R6 class. The function can be used with regress.
## S3 method for class 'quantile_rf'
.fit(self, data = NULL)
| self | a 'tidyFit' R6 class. | 
| data | a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). | 
Hyperparameters:
ntree (number of trees)
mtry (number of variables randomly sampled at each split)
Important method arguments (passed to m)
tau (the quantile(s) to be estimated)
The function provides a wrapper for quantregForest::quantregForest. See ?quantregForest for more details.
The argument tau is the chosen quantile (default tau = 0.5).
tau is passed directly to m('quantile_rf', tau = c(0.1, 0.5, 0.9) and is not passed to predict as in the quantregForest::quantregForest package. This is done to ensure a consistent interface with the quantile regression from quantreg.
Implementation
No implementation notes
A fitted 'tidyFit' class model.
Johann Pfitzinger
Meinshausen N (2017). quantregForest: Quantile Regression Forests. R package version 1.3-7, https://CRAN.R-project.org/package=quantregForest.
.fit.quantile, .fit.rf and m methods
# Load data
data <- tidyfit::Factor_Industry_Returns
data <- dplyr::filter(data, Industry == "HiTec")
data <- dplyr::select(data, -Date, -Industry)
# Stand-alone function
fit <- m("quantile_rf", Return ~ ., data, tau = 0.5, ntree = 50)
fit
# Within 'regress' function
fit <- regress(data, Return ~ .,
               m("quantile_rf", tau = c(0.1, 0.5, 0.9), ntree = 50))
explain(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.