calculate_rroc: Regression ROC Curve calculation

View source: R/rroc.R

calculate_rrocR Documentation

Regression ROC Curve calculation

Description

This function calculates the RegressionROC Curve of of Hernández-Orallo \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1016/j.patcog.2013.06.014")}. It provides estimates for the positive and negative errors when predictions are shifted by a variety of constants (which range across the domain of observed residuals). Curves closer to the axes are, in general, to be preferred. In general, this curve provides a simple way to visualize the error properties of a regression model.

Usage

calculate_rroc(label, prediction, nbins = 100)

Arguments

label

True label

prediction

Model prediction of the label (out of sample)

nbins

Number of shift values to sweep over

Details

The dot shows the errors when no shift is applied, corresponding to the base model predictions.

Value

A tibble with nbins rows.

References

Hernández-Orallo, J. (2013). ROC curves for regression. Pattern Recognition, 46(12), 3395-3411.


tidyhte documentation built on Aug. 14, 2023, 5:08 p.m.