tidy_apriori: Tidy Apriori Algorithm

View source: R/unsupervised-market-basket.R

tidy_aprioriR Documentation

Tidy Apriori Algorithm

Description

Mine association rules using the Apriori algorithm with tidy output

Usage

tidy_apriori(
  transactions,
  support = 0.01,
  confidence = 0.5,
  minlen = 2,
  maxlen = 10,
  target = "rules"
)

Arguments

transactions

A transactions object or data frame

support

Minimum support (default: 0.01)

confidence

Minimum confidence (default: 0.5)

minlen

Minimum rule length (default: 2)

maxlen

Maximum rule length (default: 10)

target

Type of association mined: "rules" (default), "frequent itemsets", "maximally frequent itemsets"

Value

A list of class "tidy_rules" containing:

  • rules_tbl: tibble of rules with lhs, rhs, and quality measures

  • rules: original rules object

  • parameters: parameters used

Examples


data("Groceries", package = "arules")

# Basic apriori
rules <- tidy_apriori(Groceries, support = 0.001, confidence = 0.5)

# Access rules
rules$rules_tbl



tidylearn documentation built on Feb. 6, 2026, 5:07 p.m.