View source: R/supervised-xgboost.R
| tl_fit_xgboost | R Documentation |
Fit an XGBoost model
tl_fit_xgboost(
data,
formula,
is_classification = FALSE,
nrounds = 100,
max_depth = 6,
eta = 0.3,
subsample = 1,
colsample_bytree = 1,
min_child_weight = 1,
gamma = 0,
alpha = 0,
lambda = 1,
early_stopping_rounds = NULL,
nthread = NULL,
verbose = 0,
...
)
data |
A data frame containing the training data |
formula |
A formula specifying the model |
is_classification |
Logical indicating if this is a classification problem |
nrounds |
Number of boosting rounds (default: 100) |
max_depth |
Maximum depth of trees (default: 6) |
eta |
Learning rate (default: 0.3) |
subsample |
Subsample ratio of observations (default: 1) |
colsample_bytree |
Subsample ratio of columns (default: 1) |
min_child_weight |
Minimum sum of instance weight needed in a child (default: 1) |
gamma |
Minimum loss reduction to make a further partition (default: 0) |
alpha |
L1 regularization term (default: 0) |
lambda |
L2 regularization term (default: 1) |
early_stopping_rounds |
Early stopping rounds (default: NULL) |
nthread |
Number of threads (default: max available) |
verbose |
Verbose output (default: 0) |
... |
Additional arguments to pass to xgb.train() |
A fitted XGBoost model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.