Nothing
test_that("linear regression models work", {
model <- tl_model(mtcars, mpg ~ wt + hp, method = "linear")
expect_s3_class(model, "tidylearn_linear")
expect_false(model$spec$is_classification)
# Predictions should be numeric
preds <- predict(model)
expect_type(preds$.pred, "double")
expect_equal(nrow(preds), nrow(mtcars))
})
test_that("logistic regression models work for classification", {
model <- tl_model(iris, Species ~ ., method = "logistic")
expect_s3_class(model, "tidylearn_logistic")
expect_true(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(iris))
})
test_that("tree models work for classification", {
skip_if_not_installed("rpart")
model <- tl_model(iris, Species ~ Sepal.Length + Sepal.Width, method = "tree")
expect_s3_class(model, "tidylearn_tree")
expect_true(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(iris))
})
test_that("tree models work for regression", {
skip_if_not_installed("rpart")
model <- tl_model(mtcars, mpg ~ wt + hp, method = "tree")
expect_s3_class(model, "tidylearn_tree")
expect_false(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_type(preds$.pred, "double")
})
test_that("random forest models work for classification", {
skip_if_not_installed("randomForest")
model <- tl_model(iris, Species ~ ., method = "forest")
expect_s3_class(model, "tidylearn_forest")
expect_true(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(iris))
})
test_that("random forest models work for regression", {
skip_if_not_installed("randomForest")
model <- tl_model(mtcars, mpg ~ wt + hp, method = "forest")
expect_s3_class(model, "tidylearn_forest")
expect_false(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_type(preds$.pred, "double")
})
test_that("ridge regression works", {
skip_if_not_installed("glmnet")
model <- tl_model(mtcars, mpg ~ ., method = "ridge")
expect_s3_class(model, "tidylearn_ridge")
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(mtcars))
})
test_that("lasso regression works", {
skip_if_not_installed("glmnet")
model <- tl_model(mtcars, mpg ~ ., method = "lasso")
expect_s3_class(model, "tidylearn_lasso")
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(mtcars))
})
test_that("elastic net works", {
skip_if_not_installed("glmnet")
model <- tl_model(mtcars, mpg ~ ., method = "elastic_net", alpha = 0.5)
expect_s3_class(model, "tidylearn_elastic_net")
# Predictions
preds <- predict(model)
expect_equal(nrow(preds), nrow(mtcars))
})
test_that("polynomial regression works", {
model <- tl_model(mtcars, mpg ~ wt, method = "polynomial", degree = 2)
expect_s3_class(model, "tidylearn_polynomial")
expect_false(model$spec$is_classification)
# Predictions
preds <- predict(model)
expect_type(preds$.pred, "double")
})
test_that("supervised models handle new data correctly", {
# Split data
split <- tl_split(iris, prop = 0.7, seed = 123)
# Train on training set
model <- tl_model(split$train, Species ~ ., method = "logistic")
# Predict on test set
preds <- predict(model, new_data = split$test)
expect_equal(nrow(preds), nrow(split$test))
})
test_that("supervised models work with formula variations", {
# Formula with interaction
model1 <- tl_model(mtcars, mpg ~ wt * hp, method = "linear")
expect_s3_class(model1, "tidylearn_linear")
# Formula with all variables
model2 <- tl_model(iris, Species ~ ., method = "logistic")
expect_s3_class(model2, "tidylearn_logistic")
# Formula with subset of variables
model3 <- tl_model(iris, Species ~ Sepal.Length + Petal.Length, method = "logistic")
expect_s3_class(model3, "tidylearn_logistic")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.