View source: R/api_azure_openai.R
azure_openai_chat | R Documentation |
This function sends a message history to the Azure OpenAI Chat Completions API and returns the assistant's reply.
azure_openai_chat(
.llm,
.endpoint_url = Sys.getenv("AZURE_ENDPOINT_URL"),
.deployment = "gpt-4o-mini",
.api_version = "2024-08-01-preview",
.max_completion_tokens = NULL,
.reasoning_effort = NULL,
.frequency_penalty = NULL,
.logit_bias = NULL,
.presence_penalty = NULL,
.seed = NULL,
.stop = NULL,
.stream = FALSE,
.temperature = NULL,
.top_p = NULL,
.timeout = 60,
.verbose = FALSE,
.json_schema = NULL,
.max_tries = 3,
.dry_run = FALSE,
.logprobs = NULL,
.top_logprobs = NULL,
.tools = NULL,
.tool_choice = NULL
)
.llm |
An |
.endpoint_url |
Base URL for the API (default: Sys.getenv("AZURE_ENDPOINT_URL")). |
.deployment |
The identifier of the model that is deployed (default: "gpt-4o-mini"). |
.api_version |
Which version of the API is deployed (default: "2024-08-01-preview"). |
.max_completion_tokens |
An upper bound for the number of tokens that can be generated for a completion. |
.reasoning_effort |
How long should reasoning models reason (can either be "low","medium" or "high"). |
.frequency_penalty |
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency. |
.logit_bias |
A named list modifying the likelihood of specified tokens appearing in the completion. |
.presence_penalty |
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far. |
.seed |
If specified, the system will make a best effort to sample deterministically. |
.stop |
Up to 4 sequences where the API will stop generating further tokens. |
.stream |
If set to TRUE, the answer will be streamed to console as it comes (default: FALSE). |
.temperature |
What sampling temperature to use, between 0 and 2. Higher values make the output more random. |
.top_p |
An alternative to sampling with temperature, called nucleus sampling. |
.timeout |
Request timeout in seconds (default: 60). |
.verbose |
Should additional information be shown after the API call (default: FALSE). |
.json_schema |
A JSON schema object provided by tidyllm schema or ellmer schemata. |
.max_tries |
Maximum retries to perform request. |
.dry_run |
If TRUE, perform a dry run and return the request object (default: FALSE). |
.logprobs |
If TRUE, get the log probabilities of each output token (default: NULL). |
.top_logprobs |
If specified, get the top N log probabilities of each output token (0-5, default: NULL). |
.tools |
Either a single TOOL object or a list of TOOL objects representing the available functions for tool calls. |
.tool_choice |
A character string specifying the tool-calling behavior; valid values are "none", "auto", or "required". |
A new LLMMessage
object containing the original messages plus the assistant's response.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.