Nothing
## ----eval= FALSE, echo=TRUE---------------------------------------------------
# # Install devtools if not already installed
# if (!requireNamespace("devtools", quietly = TRUE)) {
# install.packages("devtools")
# }
#
# # Install tidyllm from GitHub
# devtools::install_github("edubruell/tidyllm")
## ----eval= FALSE, echo=TRUE---------------------------------------------------
# Sys.setenv(ANTHROPIC_API_KEY = "YOUR-ANTHROPIC-API-KEY")
## ----eval= FALSE, echo=TRUE---------------------------------------------------
# Sys.setenv(OPENAI_API_KEY = "YOUR-OPENAI-API-KEY")
## ----eval= FALSE, echo=TRUE---------------------------------------------------
# Sys.setenv(GROQ_API_KEY = "YOUR-GROQ-API-KEY")
## ----eval= FALSE, echo=TRUE---------------------------------------------------
# ANTHROPIC_API_KEY="XX-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
## ----firsttry, eval=FALSE, echo=TRUE-----------------------------------------
# library(tidyllm)
#
# # Start a conversation with Claude
# conversation <- llm_message("What is the capital of France?") |>
# claude()
#
# #Standard way that llm_messages are printed
# conversation
#
# # Get the last reply
# last_reply(conversation)
#
# # Continue the conversation with ChatGPT
# conversation <- conversation |>
# llm_message("What's a famous landmark in this city?") |>
# chatgpt()
#
# # Get the last reply
# last_reply(conversation)
## ----images, eval=FALSE, echo=TRUE-------------------------------------------
# # Describe an image using a llava model on ollama
# image_description <- llm_message("Describe this image",
# .imagefile = "https://raw.githubusercontent.com/edubruell/tidyllm/refs/heads/main/tidyllm.png") |>
# ollama(.model = "llava")
#
# # Get the last reply
# last_reply(image_description)
## ----routputs, eval=FALSE, echo=TRUE-----------------------------------------
# library(tidyverse)
#
# # Example data
# example_data <- tibble(
# x = rnorm(100),
# y = 2 * x + rnorm(100)
# )
#
# # Create a plot
# ggplot(example_data, aes(x, y)) +
# geom_point() +
# geom_smooth(method = "lm")
#
# # Send the plot and data summary to a language model
# analysis <- llm_message("Analyze this plot and data summary:",
# .capture_plot = TRUE,
# .f = ~{summary(example_data)}) |>
# claude()
#
# last_reply(analysis)
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# install.packages("pdftools")
## ----eval=FALSE, echo=TRUE----------------------------------------------------
# llm_message("Please summarize the key points from the provided PDF document.",
# .pdf = "https://pdfobject.com/pdf/sample.pdf") |>
# ollama()
## ----temperature, eval=FALSE, echo=TRUE--------------------------------------
# temp_example <- llm_message("Explain how temperature parameters work in large language models.")
#
# #per default it is non-zero
# temp_example |> ollama()
#
# #Temperature sets the randomness of the answer
# #0 is one extreme where the output becomes fully deterministic.
# #Else the next token is allways sampled from a list of the most likely tokens. Here only the most likely token is used every time.
# temp_example |> ollama(.temperature=0) |> last_reply()
# temp_example |> ollama(.temperature=0) |> last_reply()# Same answer
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.