View source: R/ee_extract_tidy.R
ee_extract_tidy | R Documentation |
ee_extract_tidy
ee_extract_tidy( x, y, stat = "mean", scale, via = "getInfo", container = "rgee_backup", sf = TRUE, lazy = FALSE, quiet = FALSE, ... )
x |
tidyee, ee$Image, or ee$ImageCollection |
y |
sf or ee$feature or ee$FeatureCollection |
stat |
zonal stat ("mean", "median" , "min","max" etc) |
scale |
A nominal scale in meters of the Image projection to work in. By default 1000. |
via |
Character. Method to export the image. Three method are implemented: "getInfo", "drive", "gcs". |
container |
Character. Name of the folder ('drive') or bucket ('gcs') to be exported into (ignore if via is not defined as "drive" or "gcs"). |
sf |
Logical. Should return an sf object? |
lazy |
Logical. If TRUE, a future::sequential object is created to evaluate the task in the future. Ignore if via is set as "getInfo". See details. |
quiet |
Logical. Suppress info message. |
... |
additional parameters |
data.frame in long format with point estimates for each time-step and y feature based on statistic provided
ee_extract
for information about ee_extract on ee$ImageCollections and ee$Images
## Not run: library(rgee) library(tidyrgee) ee_Initizialize() modis_ic <- ee$ImageCollection("MODIS/006/MOD13Q1") point_sample_buffered <- tidyrgee::bgd_msna |> sample_n(3) |> sf::st_as_sf(coords=c("_gps_reading_longitude", "_gps_reading_latitude"), crs=4326) |> sf::st_transform(crs=32646) |> sf::st_buffer(dist = 500) |> dplyr::select(`_uuid`) modis_ic_tidy <- as_tidyee(modis_ic) modis_monthly_baseline_mean <- modis_ic_tidy |> select("NDVI") |> filter(year %in% 2000:2015) |> group_by(month) |> summarise(stat="mean") ndvi_monthly_mean_at_pt<- modis_monthly_baseline_mean |> ee_extract(y = point_sample_buffered, fun="mean", scale = 500) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.