simulate_sfnetwork | R Documentation |
Simulate values from a GMRF using a tail-up exponential model on a stream network
simulate_sfnetwork(sfnetwork_mesh, theta, n = 1, what = c("samples", "Q"))
sfnetwork_mesh |
Output from |
theta |
Decorrelation rate |
n |
number of simulated GMRFs |
what |
Whether to return the simulated GMRF or its precision matrix |
a matrix of simulated values for a Gaussian Markov random field
arising from a stream-network spatial domain, with row for each spatial random
effect and n
columns, using the sparse precision matrix
defined in Charsley et al. (2023)
Charsley, A. R., Gruss, A., Thorson, J. T., Rudd, M. B., Crow, S. K., David, B., Williams, E. K., & Hoyle, S. D. (2023). Catchment-scale stream network spatio-temporal models, applied to the freshwater stages of a diadromous fish species, longfin eel (Anguilla dieffenbachii). Fisheries Research, 259, 106583. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.fishres.2022.106583")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.