tmle: Targeted Maximum Likelihood Estimation
Version 1.2.0-5

Targeted maximum likelihood estimation of point treatment effects (Targeted Maximum Likelihood Learning, The International Journal of biostatistics, 2(1), 2006. This version adds the tmleMSM() function to the package, for estimating the parameters of a marginal structural model for a binary point treatment effect. The tmle() function calculates the adjusted marginal difference in mean outcome associated with a binary point treatment, for continuous or binary outcomes. Relative risk and odds ratio estimates are also reported for binary outcomes. Missingness in the outcome is allowed, but not in treatment assignment or baseline covariate values. Effect estimation stratified by a binary mediating variable is also available. The population mean is calculated when there is missingness, and no variation in the treatment assignment. An ID argument can be used to identify repeated measures. Default settings call 'SuperLearner' to estimate the Q and g portions of the likelihood, unless values or a user-supplied regression function are passed in as arguments.

Package details

AuthorSusan Gruber [aut, cre], Mark van der Laan [aut]
Date of publication2017-01-07 17:45:06
MaintainerSusan Gruber <>
LicenseBSD_3_clause + file LICENSE | GPL-2
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the tmle package in your browser

Any scripts or data that you put into this service are public.

tmle documentation built on May 29, 2017, 8:37 p.m.