| rf100_medical_collection | R Documentation |
Loads one of the RoboFlow 100 Medical datasets (COCO format) with per-dataset folders and train/valid/test splits.
rf100_medical_collection(
dataset,
split = c("train", "test", "valid"),
transform = NULL,
target_transform = NULL,
download = FALSE
)
dataset |
Dataset to select within |
split |
the subset of the dataset to choose between |
transform |
Optional transform function applied to the image. |
target_transform |
Optional transform function applied to the target. |
download |
Logical. If TRUE, downloads the dataset if not present at |
A torch dataset. Each element is a named list with:
x: H x W x 3 array representing the image.
y: a list containing the target with:
image_id: numeric identifier of the x image.
labels: numeric identifier of the N bounding-box object class.
boxes: a torch_tensor of shape (N, 4) with bounding boxes, each in (x_{min}, y_{min}, x_{max}, y_{max}) format.
The returned item inherits the class image_with_bounding_box so it can be
visualised with helper functions such as draw_bounding_boxes().
Other detection_dataset:
coco_detection_dataset(),
pascal_voc_datasets,
rf100_biology_collection(),
rf100_damage_collection(),
rf100_document_collection(),
rf100_infrared_collection(),
rf100_underwater_collection()
## Not run:
ds <- rf100_medical_collection(
dataset = "rheumatology",
split = "test",
transform = transform_to_tensor,
download = TRUE
)
item <- ds[1]
boxed <- draw_bounding_boxes(item)
tensor_image_browse(boxed)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.