View source: R/transforms-generics.R
transform_normalize | R Documentation |
Given mean: (mean[1],...,mean[n])
and std: (std[1],..,std[n])
for n
channels, this transform will normalize each channel of the input
torch_tensor
i.e.,
output[channel] = (input[channel] - mean[channel]) / std[channel]
transform_normalize(img, mean, std, inplace = FALSE)
img |
A |
mean |
(sequence): Sequence of means for each channel. |
std |
(sequence): Sequence of standard deviations for each channel. |
inplace |
(bool,optional): Bool to make this operation in-place. |
This transform acts out of place, i.e., it does not mutate the input tensor.
Other transforms:
transform_adjust_brightness()
,
transform_adjust_contrast()
,
transform_adjust_gamma()
,
transform_adjust_hue()
,
transform_adjust_saturation()
,
transform_affine()
,
transform_center_crop()
,
transform_color_jitter()
,
transform_convert_image_dtype()
,
transform_crop()
,
transform_five_crop()
,
transform_grayscale()
,
transform_hflip()
,
transform_linear_transformation()
,
transform_pad()
,
transform_perspective()
,
transform_random_affine()
,
transform_random_apply()
,
transform_random_choice()
,
transform_random_crop()
,
transform_random_erasing()
,
transform_random_grayscale()
,
transform_random_horizontal_flip()
,
transform_random_order()
,
transform_random_perspective()
,
transform_random_resized_crop()
,
transform_random_rotation()
,
transform_random_vertical_flip()
,
transform_resize()
,
transform_resized_crop()
,
transform_rgb_to_grayscale()
,
transform_rotate()
,
transform_ten_crop()
,
transform_to_tensor()
,
transform_vflip()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.