manuallySelect | R Documentation |
manuallySelect
opens a graphic user interface to create
training data for a neural net by manually selecting true and
false positives (i.e. correctly identified particles and noise, respectively).
manuallySelect(particles, colorimages = NULL, frames = NULL)
particles |
A data frame of class 'TrDm' with particle statistics for
each frame, obtained by |
colorimages |
An array with the original full color images, in order
to plot on the original images. If |
frames |
A vector defining the frame(s) that should be used. Default
is |
List containing three elements: true positives, false positives, and the evaluated frame.
Marjolein Bruijning, Caspar A. Hallmann & Marco D. Visser
## Not run:
dir.create("images")
## Create image sequence
traj <- simulTrajec(path="images",
nframes=30,nIndividuals=20,domain='square',
h=0.01,rho=0.9,movingNoise=TRUE,
parsMoving = list(density=20, duration=10, size=1,
speed = 10, colRange = c(0,1)),
sizes=runif(20,0.004,0.006))
## Load images
dir <- "images"
allFullImages <- loadImages (dirPictures=dir,nImages=1:30)
stillBack <- createBackground(allFullImages,method="mean")
allImages <- subtractBackground(stillBack)
partIden <- identifyParticles(allImages,threshold=-0.1,
pixelRange=c(3,400))
# select the nframes with the most identified particles
nframes <- 3
frames <- order(tapply(partIden$patchID,partIden$frame,length),
decreasing=TRUE)[1:nframes]
mId <- manuallySelect(particles=partIden,frame=frames)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.