Nothing
#' Gaussian mixture data
#'
#' Load the Gaussian mixture data from Hastie et al. (2009, Sec. 2.3.3).
#'
#' @return A list with the following components:
#' \describe{
#' \item{x}{200 x 2 matrix of training predictors.}
#' \item{y}{class variable; logical vector of 0s and 1s - 100 of each.}
#' \item{xnew}{matrix 6831 x 2 of lattice points in predictor space.}
#' \item{prob}{vector of 6831 probabilities (of class TRUE) at each lattice point.}
#' \item{marginal}{marginal probability at each lattice point.}
#' \item{px1}{69 lattice coordinates for \code{x1}.}
#' \item{px2}{99 lattice values for \code{x2} (69*99=6831).}
#' \item{means}{20 x 2 matrix of the mixture centers, first ten for one class, next ten for the other.}
#' }
#'
#' @references
#' Trevor Hastie, Robert. Tibshirani, and Jerome Friedman. The Elements of
#' Statistical Learning: Data Mining, Inference, and Prediction, Second Edition.
#' Springer Series in Statistics. Springer-Verlag, 2009.
#'
#' @source
#' https://web.stanford.edu/~hastie/ElemStatLearn/datasets/mixture.example.info.txt
#'
#' @export
#'
#' @examples
#' eslmix <- load_eslmix()
#' names(eslmix)
load_eslmix <- function() {
readRDS(system.file("extdata", "eslmix.rds", package = "treemisc"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.