voronoi.mosaic: Create a Voronoi mosaic

Description Usage Arguments Value Author(s) See Also Examples

Description

This function creates a Voronoi mosaic.

It creates first a Delaunay triangulation, determines the circumcircle centers of its triangles, and connects these points according to the neighbourhood relations between the triangles.

Usage

1
voronoi.mosaic(x,y=NULL,duplicate="error")

Arguments

x

vector containing x coordinates of the data. If y is missing x should contain two elements $x and $y.

y

vector containing y coordinates of the data.

duplicate

flag indicating how to handle duplicate elements. Possible values are: "error" – default, "strip" – remove all duplicate points, "remove" – leave one point of duplicate points.

Value

An object of class voronoi.

Author(s)

A. Gebhardt

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# example from TRIPACK:
data(tritest)
tritest.vm<-voronoi.mosaic(tritest$x,tritest$y)
tritest.vm
# use a part of the quakes data set:
data(quakes)
quakes.part<-quakes[(quakes[,1]<=-17 & quakes[,1]>=-19.0 &
                     quakes[,2]<=182.0 & quakes[,2]>=180.0),]
quakes.vm<-voronoi.mosaic(quakes.part$lon, quakes.part$lat, duplicate="remove")
quakes.vm

Example output

voronoi mosaic:
nodes: (x,y): neighbours (<0: dummy node)
1: (0.5,-0.7583333): 7 2 -1 
2: (0.2392857,0.1107143): 8 3 1 
3: (0.1107143,0.2392857): 9 4 2 
4: (-0.7583333,0.5): 10 -2 3 
5: (1.758333,0.5): 11 6 -3 
6: (0.8892857,0.2392857): 12 7 5 
7: (0.7607143,0.1107143): 8 1 6 
8: (0.5,0.30625): 17 2 7 
9: (0.30625,0.5): 18 10 3 
10: (0.1107143,0.7607143): 14 4 9 
11: (0.8892857,0.7607143): 16 12 5 
12: (0.69375,0.5): 17 6 11 
13: (0.5,1.758333): -4 14 16 
14: (0.2392857,0.8892857): 10 15 13 
15: (0.5,0.69375): 18 16 14 
16: (0.7607143,0.8892857): 11 13 15 
17: (0.5,0.5): 12 18 8 
18: (0.5,0.5): 15 9 17 
dummy nodes: (x,y)
1: (0.5,-3.275)
2: (-3.275,0.5)
3: (4.275,0.5)
4: (0.5,4.275)
voronoi mosaic:
nodes: (x,y): neighbours (<0: dummy node)
1: (181.6603,-18.02053): 140 2 5 
2: (181.6906,-18.02356): 62 3 1 
3: (181.7071,-18.00231): 64 4 2 
4: (181.69,-17.9425): 87 5 3 
5: (181.635,-17.97): 89 1 4 
6: (181.5867,-17.848): 42 7 10 
7: (181.515,-17.805): 131 8 6 
8: (181.4883,-17.83167): 60 9 7 
9: (181.505,-17.865): 49 10 8 
10: (181.5725,-17.865): 48 6 9 
11: (181.4426,-17.93914): 182 12 16 
12: (181.443,-17.941): 69 13 11 
13: (181.485,-17.955): 136 14 12 
14: (181.5,-17.94): 106 15 13 
15: (181.5,-17.92125): 48 16 14 
16: (181.4979,-17.92071): 50 11 15 
17: (181.3258,-17.55574): 113 18 23 
18: (181.2477,-17.60459): 125 19 17 
19: (181.2307,-17.64976): 35 20 18 
20: (181.27,-17.6825): 37 21 19 
21: (181.3217,-17.65667): 110 22 20 
22: (181.3475,-17.605): 26 23 21 
23: (181.3546,-17.56214): 25 17 22 
24: (181.4079,-17.55979): 166 25 27 
25: (181.37,-17.556): 98 23 24 
26: (181.3929,-17.69571): 111 27 22 
27: (181.4733,-17.66889): 133 24 26 
28: (181.3471,-17.75857): 119 29 34 
29: (181.335,-17.795): 121 30 28 
30: (181.335,-17.8325): 135 31 29 
31: (181.349,-17.85): 134 32 30 
32: (181.362,-17.86081): 162 33 31 
33: (181.365,-17.859): 90 34 32 
34: (181.365,-17.74667): 93 28 33 
35: (181.1963,-17.66125): 158 36 19 
36: (181.2109,-17.73455): 169 37 35 
37: (181.27,-17.705): 165 20 36 
38: (181.8683,-17.63689): 65 39 43 
39: (181.7557,-17.54305): 132 40 38 
40: (181.5874,-17.67529): 166 41 39 
41: (181.5859,-17.67818): 133 42 40 
42: (181.6484,-17.81096): 6 43 41 
43: (181.6941,-17.82687): 164 38 42 
44: (180.0776,-16.44791): 68 45 -1 
45: (181.2288,-17.25803): 118 46 44 
46: (181.365,-17.21962): 97 47 45 
47: (181.6647,-17.08127): 96 -2 46 
48: (181.5623,-17.90567): 109 10 15 
49: (181.5007,-17.86643): 61 50 9 
50: (181.4836,-17.89214): 95 16 49 
51: (180.5426,-18.09458): 145 52 55 
52: (180.5606,-17.98647): 147 53 51 
53: (180.5371,-17.92765): 156 54 52 
54: (180.4204,-17.83431): 67 55 53 
55: (177.5715,-20.02581): -3 51 54 
56: (181.915,-17.845): 66 57 59 
57: (181.965,-17.675): 65 58 56 
58: (181.7659,-17.87413): 164 59 57 
59: (181.8056,-17.90468): 186 56 58 
60: (181.4521,-17.81357): 91 61 8 
61: (181.463,-17.857): 94 49 60 
62: (181.6991,-18.05206): 85 63 2 
63: (181.795,-18.1): 176 64 62 
64: (181.795,-17.98278): 186 3 63 
65: (181.97,-17.66013): 38 57 -4 
66: (182.0112,-18.02142): 174 -5 56 
67: (180.601,-17.51833): 137 68 54 
68: (180.4596,-17.14515): 115 44 67 
69: (181.4271,-18.06823): 12 70 79 
70: (181.3227,-18.14192): 183 71 69 
71: (181.2515,-18.20125): 160 72 70 
72: (181.2667,-18.26443): 179 73 71 
73: (181.2805,-18.28576): 102 74 72 
74: (181.4422,-18.29962): 105 75 73 
75: (181.5792,-18.14306): 81 76 74 
76: (181.5761,-18.12611): 184 77 75 
77: (181.575,-18.125): 99 78 76 
78: (181.555,-18.10833): 101 79 77 
79: (181.4314,-18.06714): 171 69 78 
80: (181.65,-18.105): 184 81 86 
81: (181.65,-18.16667): 75 82 80 
82: (181.6555,-18.17096): 130 83 81 
83: (181.6862,-18.13): 180 84 82 
84: (181.6939,-18.09944): 180 85 83 
85: (181.6891,-18.07545): 62 86 84 
86: (181.6529,-18.09357): 139 80 85 
87: (181.69,-17.8575): 164 88 4 
88: (181.6238,-17.95676): 124 89 87 
89: (181.6321,-17.96786): 187 5 88 
90: (181.3872,-17.85233): 94 91 33 
91: (181.4385,-17.79081): 60 92 90 
92: (181.4404,-17.78021): 131 93 91 
93: (181.3675,-17.74375): 111 34 92 
94: (181.4375,-17.8825): 90 95 61 
95: (181.445,-17.905): 182 50 94 
96: (181.66,-17.2): 132 47 98 
97: (181.365,-17.47): 118 98 46 
98: (181.37,-17.49): 25 96 97 
99: (181.575,-18.055): 138 100 77 
100: (181.575,-18.055): 141 101 99 
101: (181.555,-18.055): 170 78 100 
102: (181.2512,-18.61559): 142 103 73 
103: (181.615,-18.83745): -6 104 102 
104: (181.6793,-18.6125): 112 105 103 
105: (181.6086,-18.36497): 129 74 104 
106: (181.52,-17.96): 136 107 14 
107: (181.5442,-17.96): 167 108 106 
108: (181.5468,-17.95682): 122 109 107 
109: (181.5642,-17.92637): 124 48 108 
110: (181.347,-17.72): 165 111 21 
111: (181.3661,-17.73589): 93 26 110 
112: (181.9931,-18.39283): 177 104 -7 
113: (181.1725,-17.41771): 17 114 117 
114: (181.1801,-17.37939): 118 115 113 
115: (180.8816,-17.34207): 68 116 114 
116: (181.0585,-17.49371): 126 117 115 
117: (181.1364,-17.465): 125 113 116 
118: (181.1808,-17.37792): 97 45 114 
119: (181.28,-17.772): 165 120 28 
120: (181.2774,-17.77565): 188 121 119 
121: (181.289,-17.795): 135 29 120 
122: (181.58,-17.99): 168 123 108 
123: (181.595,-17.975): 187 124 122 
124: (181.595,-17.951): 88 109 123 
125: (181.1543,-17.54861): 18 117 128 
126: (181.035,-17.51917): 137 127 116 
127: (181.035,-17.64944): 154 128 126 
128: (181.1403,-17.62605): 158 125 127 
129: (181.6779,-18.30601): 177 130 105 
130: (181.6702,-18.19788): 181 82 129 
131: (181.4697,-17.75971): 133 92 7 
132: (181.66,-17.2465): 166 39 96 
133: (181.507,-17.69133): 41 27 131 
134: (181.2717,-17.85): 163 31 135 
135: (181.2962,-17.81312): 121 134 30 
136: (181.4975,-17.9675): 171 106 13 
137: (180.6679,-17.58035): 155 126 67 
138: (181.605,-18.085): 184 139 99 
139: (181.619,-18.071): 86 140 138 
140: (181.6252,-18.03367): 1 141 139 
141: (181.605,-18.025): 185 100 140 
142: (180.4018,-18.99308): 102 143 -8 
143: (180.7112,-18.50518): 179 144 142 
144: (180.7506,-18.18994): 148 145 143 
145: (180.6091,-18.09088): 146 51 144 
146: (180.7571,-17.94289): 149 147 145 
147: (180.762,-17.91933): 156 52 146 
148: (180.7621,-18.175): 178 149 144 
149: (180.7872,-18.10364): 150 146 148 
150: (181.0636,-18.07293): 178 151 149 
151: (181.1053,-18.04913): 160 152 150 
152: (181.0914,-18.00856): 159 153 151 
153: (180.9868,-17.86618): 157 154 152 
154: (180.9174,-17.81932): 127 155 153 
155: (180.8233,-17.79479): 137 156 154 
156: (180.7949,-17.84172): 53 147 155 
157: (181.1118,-17.77237): 169 158 153 
158: (181.1624,-17.65447): 35 128 157 
159: (181.213,-17.887): 188 152 163 
160: (181.1916,-18.12583): 71 161 151 
161: (181.355,-17.897): 183 162 160 
162: (181.355,-17.88): 32 163 161 
163: (181.2317,-17.88): 134 159 162 
164: (181.6952,-17.82872): 87 58 43 
165: (181.28,-17.72): 119 110 37 
166: (181.5101,-17.50139): 24 40 132 
167: (181.535,-18.015): 170 168 107 
168: (181.58,-18.015): 185 122 167 
169: (181.2034,-17.75202): 188 36 157 
170: (181.525,-18.025): 167 171 101 
171: (181.4725,-18.0425): 136 79 170 
172: (181.7975,-18.13): 181 173 176 
173: (181.8675,-18.27): 177 174 172 
174: (181.9873,-18.03038): 66 175 173 
175: (181.9619,-18.02905): 186 176 174 
176: (181.8,-18.11): 63 172 175 
177: (181.8682,-18.27882): 129 112 173 
178: (180.9523,-18.175): 179 150 148 
179: (180.8482,-18.40393): 178 143 72 
180: (181.755,-18.13): 181 84 83 
181: (181.775,-18.135): 180 130 172 
182: (181.4406,-17.93593): 95 183 11 
183: (181.3939,-17.92816): 161 70 182 
184: (181.593,-18.105): 80 138 76 
185: (181.605,-18.025): 187 168 141 
186: (181.8127,-17.9612): 59 64 175 
187: (181.605,-17.995): 123 185 89 
188: (181.2423,-17.78442): 120 169 159 
dummy nodes: (x,y)
1: (177.4639,-12.85899)
2: (183.9572,-13.27914)
3: (173.964,-22.61379)
4: (186.2833,-16.6081)
5: (186.4412,-18.31674)
6: (183.3786,-22.91193)
7: (186.3752,-19.10619)
8: (177.0343,-21.88635)

tripack documentation built on May 29, 2017, 9:52 p.m.