tsal.tail | R Documentation |
Density function, distribution function, quantile function, random generation.
dtsal.tail(x, shape=1,scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
log=FALSE)
ptsal.tail(x, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
qtsal.tail(p, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
rtsal.tail(n, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0)
x |
vector of quantiles. |
q |
vector of quantiles or a shape parameter. |
p |
vector of probabilities. |
n |
number of observations. If |
shape |
shape parameter. |
scale , kappa |
scale parameters. |
xmin |
minimum x-value. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The Tsallis distribution with a censoring parameter is the distribution of
a Tsallis distributed random variable conditionnaly on x>xmin
.
The density is defined as
f(x) = \frac{C}{ \kappa}(1-(1-q)x/\kappa)^{1/(1-q)}
for all x>xmin
where C
is the appropriate constant so that the integral
of the density equals 1. That is C
is the survival probability of the classic Tsallis
distribution at x=xmin
.
It is convenient to introduce a re-parameterization
shape = -1/(1-q)
, scale = shape*\kappa
which makes the relationship to the Pareto clearer, and eases estimation.
If we have both shape/scale and q/kappa parameters, the latter over-ride.
dtsal.tail
gives the density,
ptsal.tail
gives the distribution function,
qtsal.tail
gives the quantile function, and
rtsal.tail
generates random deviates.
The length of the result is determined by n
for
rtsal.tail
, and is the maximum of the lengths of the
numerical parameters for the other functions.
Cosma Shalizi (original R code), Christophe Dutang (R packaging)
Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions, http://bactra.org/research/tsallis-MLE/ and https://arxiv.org/abs/math/0701854.
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dtsal(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, ptsal(x, 1/2, 1/4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.