| TARMA.test | R Documentation |
Heteroskedasticity robust supremum Lagrange Multiplier tests for a ARMA specification versus a TARMA specification. Includes the AR versus TAR test.
TARMA.test(
x,
pa = 0.25,
pb = 0.75,
ar.ord,
ma.ord,
ma.fixed = TRUE,
d,
thd.range,
method = "CSS-ML",
...
)
x |
A univariate time series, either a |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
ma.ord |
Order of the MA part. |
ma.fixed |
Logical. Only applies to testing ARMA vs TARMA. If |
d |
Delay parameter. Defaults to |
thd.range |
Vector of optional user defined threshold range. If missing then |
method |
Fitting method to be passed to |
... |
Additional arguments to be passed to |
Implements an asymptotic supremum Lagrange Multiplier test to test an ARMA specification versus a TARMA specification.
Both the non-robust supLM and the robust supLMh statistics are returned.
If ma.fixed=TRUE (the default), the AR parameters are tested whereas the MA parameters are fixed. If ma.fixed=FALSE both the AR and the MA parameters are tested.
This is an asymptotic test and the value of the test statistic has to be compared with the critical values tabulated in \insertCiteGor21tseriesTARMA and \insertCiteAnd03tseriesTARMA. These are automatically computed and printed by print.TARMAtest.
If ma.ord=0 then the AR versus TAR test is used. Note that when method='CSS', this is equivalent to TAR.test, which uses least squares.
An object of class TARMAtest with components:
statisticThe value of the supLM statistic and its robust version supLMh.
parameterA named vector: threshold is the value that maximizes the Lagrange Multiplier values.
test.vVector of values of the two LM statistics for each threshold given in thd.range.
thd.rangeRange of values of the threshold.
fit.ARMAThe null model: ARMA fit over x.
sigma2Estimated innovation variance from the ARMA fit.
data.nameA character string giving the name of the data.
propProportion of values of the series that fall in the lower regime.
p.valueThe p-value of the test. It is NULL for the asymptotic test.
methodA character string indicating the type of test performed.
dThe delay parameter.
paLower threshold quantile.
dfreeEffective degrees of freedom. It is the number of tested parameters.
Simone Giannerini, simone.giannerini@uniud.it
Greta Goracci, greta.goracci@unibz.it
Gor23tseriesTARMA
And03tseriesTARMA
TAR.test for the AR vs TAR asymptotic version of the test with different defaults. TAR.test.B for the bootstrap version of the AR vs TAR test. TARMAGARCH.test for the robust version of the test that assumes GARCH innovations. TARMA.sim to simulate from a TARMA process.
## a TARMA(1,1,1,1) where the threshold effect is on the AR parameters
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0.5, theta2=0.5, d=1, thd=0.2)
TARMA.test(x1, ar.ord=1, ma.ord=1, d=1)
TARMA.test(x1, ar.ord=1, ma.ord=1, d=1, ma.fixed=FALSE) # full TARMA test
## a TARMA(1,1,1,1) where the threshold effect is on the MA parameters
set.seed(212)
x2 <- TARMA.sim(n=100, phi1=c(0.5,0.2), phi2=c(0.5,0.2), theta1=0.6, theta2=-0.6, d=1, thd=0.2)
TARMA.test(x2, ar.ord=1, ma.ord=1, d=1)
TARMA.test(x2, ar.ord=1, ma.ord=1, d=1, ma.fixed=FALSE) # full TARMA test
## a ARMA(1,1)
x3 <- arima.sim(n=100, model=list(order = c(1,0,1),ar=0.5, ma=0.5))
TARMA.test(x3, ar.ord=1, ma.ord=1, d=1)
## a TAR(1,1)
x4 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TARMA.test(x4, ar.ord=1, ma.ord=0, d=1)
## a AR(1)
x5 <- arima.sim(n=100, model=list(order = c(1,0,0),ar=0.5))
TARMA.test(x5, ar.ord=1, ma.ord=0, d=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.