Nothing
#' Monthly Medicare Australia prescription data
#'
#' \code{PBS} is a monthly `tsibble` with two values:
#' \tabular{ll}{
#' Scripts: \tab Total number of scripts\cr
#' Cost: \tab Cost of the scripts in $AUD\cr
#' }
#'
#' The data is disaggregated using four keys:
#' \tabular{ll}{
#' Concession: \tab Concessional scripts are given to pensioners, unemployed, dependents, and other card holders \cr
#' Type: \tab Co-payments are made until an individual's script expenditure hits a threshold ($290.00 for concession, $1141.80 otherwise). Safety net subsidies are provided to individuals exceeding this amount. \cr
#' ATC1: \tab Anatomical Therapeutic Chemical index (level 1)\cr
#' ATC2: \tab Anatomical Therapeutic Chemical index (level 2)\cr
#' }
#'
#' @source
#' Medicare Australia
#'
#' @name PBS
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' PBS
#'
NULL
#' Fastest running times for Olympic races
#'
#' \code{olympic_running} is a quadrennial `tsibble` with one value:
#' \tabular{ll}{
#' Time: \tab Fastest running time for the event (seconds)\cr
#' }
#'
#' The event is identified using two keys:
#' \tabular{ll}{
#' Length: \tab The length of the race (meters)\cr
#' Sex: \tab The sex of the event\cr
#' }
#'
#' The data contains missing values in 1916, 1940 and 1944 due to the World Wars.
#'
#' @source
#' <https://olympics.com/en/sports/athletics/>
#'
#' @name olympic_running
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' olympic_running
#'
#' if(requireNamespace("ggplot2")){
#' library(ggplot2)
#' olympic_running %>% as_tibble %>%
#' ggplot(aes(x=Year, y = Time, colour = Sex)) +
#' geom_line() +
#' facet_wrap(~ Length, scales = "free_y")
#' }
NULL
#' Australian retail trade turnover
#'
#' \code{aus_retail} is a monthly `tsibble` with one value:
#' \tabular{ll}{
#' Turnover: \tab Retail turnover in $Million AUD\cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' State: \tab The Australian state (or territory)\cr
#' Industry: \tab The industry of retail trade\cr
#' }
#'
#' @source
#' Australian Bureau of Statistics, catalogue number 8501.0, table 11.
#'
#' @name aus_retail
#' @format Time series of class `tsibble`
#' @keywords datasets
#'
#' @examples
#' library(tsibble)
#' aus_retail
#'
NULL
#' Passenger numbers on Ansett airline flights
#'
#' The data features a major pilots' industrial dispute which results in some
#' weeks having zero passengers. There were also at least two changes in the
#' definitions of passenger classes.
#'
#' \code{ansett} is a weekly `tsibble` with one value:
#' \tabular{ll}{
#' Passengers: \tab Total air passengers travelling with Ansett\cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' Airports: \tab The airports that passengers are travelling between (both directions)\cr
#' Class: \tab The class of the ticket.\cr
#' }
#'
#' @source
#' Ansett Airlines (which no longer exists).
#'
#' @name ansett
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' ansett
#'
NULL
#' NYC Citi Bike trips
#'
#' A sample from NYC Citi Bike usage of 10 bikes throughout 2018. The data
#' includes event data on each trip, including the trip's start and end times
#' and locations. The customer's gender, birth year and bike usage type is
#' also available.
#'
#' \code{nyc_bikes} is a `tsibble` containing event data, the events include
#' these details:
#' \tabular{ll}{
#' start_time: \tab The time and date when the trip was started.\cr
#' stop_time: \tab The time and date when the trip was ended.\cr
#' start_station:\tab A unique identifier for the starting bike station.\cr
#' start_lat: \tab The latitude of the starting bike station.\cr
#' start_long: \tab The longitude of the starting bike station.\cr
#' end_station: \tab A unique identifier for the destination bike station.\cr
#' end_lat: \tab The latitutde of the destination bike station.\cr
#' end_long: \tab The longitude of the destination bike station.\cr
#' type: \tab The type of trip. A "Customer" has purchased either a 24-hour or 3-day pass, and a "Subscriber" has purchased an annual subscription.\cr
#' birth_year \tab The bike rider's year of birth.\cr
#' gender: \tab The gender of the bike rider.\cr
#' }
#'
#' Each series is uniquely identified by one key:
#' \tabular{ll}{
#' bike_id: \tab A unique identifier for the bike.\cr
#' }
#'
#' @source
#' Citi Bike NYC, <https://www.citibikenyc.com/system-data>
#'
#' @name nyc_bikes
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' nyc_bikes
NULL
#' GAFA stock prices
#'
#' Historical stock prices from 2014-2018 for Google, Amazon, Facebook and Apple.
#' All prices are in $USD.
#'
#' \code{gafa_stock} is a `tsibble` containing data on irregular trading days:
#' \tabular{ll}{
#' Open: \tab The opening price for the stock.\cr
#' High: \tab The stock's highest trading price.\cr
#' Low: \tab The stock's lowest trading price.\cr
#' Close: \tab The closing price for the stock.\cr
#' Adj_Close: \tab The adjusted closing price for the stock.\cr
#' Volume: \tab The amount of stock traded.\cr
#' }
#'
#' Each stock is uniquely identified by one key:
#' \tabular{ll}{
#' Symbol: \tab The ticker symbol for the stock.\cr
#' }
#'
#' @source
#' Yahoo Finance historical data
#'
#' @name gafa_stock
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' gafa_stock
NULL
#' Pelt trading records
#'
#' Hudson Bay Company trading records for Snowshoe Hare and Canadian Lynx furs
#' from 1845 to 1935. This data contains trade records for all areas of the company.
#'
#' \code{pelt} is an annual `tsibble` with two values:
#' \tabular{ll}{
#' Hare: \tab The number of Snowshoe Hare pelts traded.\cr
#' Lynx: \tab The number of Canadian Lynx pelts traded.\cr
#' }
#'
#' @source
#' Hudson Bay Company
#'
#' @name pelt
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' pelt
NULL
#' Global economic indicators
#'
#' Economic indicators featured by the World Bank from 1960 to 2017.
#'
#' \code{global_economy} is an annual `tsibble` with six values:
#' \tabular{ll}{
#' GDP: \tab Gross domestic product (in $USD February 2019).\cr
#' Growth: \tab Annual percentage growth in GDP.\cr
#' CPI: \tab Consumer price index (base year 2010).\cr
#' Imports: \tab Imports of goods and services (% of GDP).\cr
#' Exports: \tab Exports of goods and services (% of GDP).\cr
#' Population:\tab Total population.
#' }
#'
#' Each series is uniquely identified by one key:
#' \tabular{ll}{
#' Country: \tab The country or region of the series.\cr
#' }
#'
#' @source
#' The World Bank, <http://datatopics.worldbank.org/world-development-indicators/>
#'
#' @name global_economy
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' global_economy
NULL
#' Australian livestock slaughter
#'
#' Meat production in Australia for human consumption
#'
#' \code{aus_livestock} is a monthly `tsibble` with one value:
#' \tabular{ll}{
#' Count: \tab Number of animals slaughtered.\cr
#' }
#'
#' Each series is uniquely identified using two keys:
#' \tabular{ll}{
#' Animal: \tab The animal slaughtered.\cr
#' State: \tab The Australian state (or territory).\cr
#' }
#'
#' @source
#' Australian Bureau of Statistics, catalogue number 7218.0.55.001 tables 1 to 7.
#'
#' @name aus_livestock
#' @format Time series of class `tsibble`
#' @keywords datasets
#' @examples
#' library(tsibble)
#' aus_livestock
NULL
#' Half-hourly electricity demand for Victoria, Australia
#'
#' \code{vic_elec} is a half-hourly `tsibble` with three values:
#' \tabular{ll}{
#' Demand: \tab Total electricity demand in MWh.\cr
#' Temperature: \tab Temperature of Melbourne (BOM site 086071).\cr
#' Holiday: \tab Indicator for if that day is a public holiday.\cr
#' }
#'
#' This data is for operational demand, which is the demand met by local
#' scheduled generating units, semi-scheduled generating units, and
#' non-scheduled intermittent generating units of aggregate capacity larger
#' than 30 MWh, and by generation imports to the region. The operational demand
#' excludes the demand met by non-scheduled non-intermittent generating units,
#' non-scheduled intermittent generating units of aggregate capacity smaller
#' than 30 MWh, exempt generation (e.g. rooftop solar, gas tri-generation, very
#' small wind farms, etc), and demand of local scheduled loads. It also
#' excludes some very large industrial users (such as mines or smelters).
#'
#' @name vic_elec
#' @docType data
#' @format Time series of class `tsibble`.
#'
#' @source
#' Australian Energy Market Operator.
#'
#' @keywords datasets
#' @examples
#' library(tsibble)
#' vic_elec
NULL
#' Quarterly production of selected commodities in Australia.
#'
#' Quarterly estimates of selected indicators of manufacturing production in Australia.
#'
#' \code{aus_production} is a half-hourly `tsibble` with six values:
#' \tabular{ll}{
#' Beer: \tab Beer production in megalitres.\cr
#' Tobacco: \tab Tobacco and cigarette production in tonnes.\cr
#' Bricks: \tab Clay brick production in millions of bricks.\cr
#' Cement: \tab Portland cement production in thousands of tonnes.\cr
#' Electricity:\tab Electricity production in gigawatt hours.\cr
#' Gas: \tab Gas production in petajoules.\cr
#' }
#'
#' @name aus_production
#' @docType data
#' @format Time series of class `tsibble`.
#' @source
#' Australian Bureau of Statistics, catalogue number 8301.0.55.001 table 1.
#'
#' @keywords datasets
#' @examples
#' library(tsibble)
#' aus_production
#'
NULL
#' Household budget characteristics
#'
#' Annual indicators of household budgets for Australia, Japan, Canada and USA
#' from 1995-2016.
#'
#' \code{hh_budget} is an annual `tsibble` with six values:
#' \tabular{ll}{
#' Debt: \tab Debt as a percentage of net disposable income.\cr
#' DI: \tab Annual growth rate of disposable income.\cr
#' Expenditure: \tab Annual growth rate of expenditure.\cr
#' Savings: \tab Savings as a percentage of household disposable income.\cr
#' Wealth: \tab Wealth as a percentage of net disposable income.\cr
#' Unemployment: \tab Percentage of unemployed in the labour force.\cr
#' }
#'
#' Each country is uniquely identified by one key:
#' \tabular{ll}{
#' Country: \tab The country of the series.\cr
#' }
#'
#' @name hh_budget
#' @docType data
#' @format Time series of class `tsibble`.
#' @source
#' The Organisation for Economic Co-operation and Development (<https://data.oecd.org/>)
#'
#' @keywords datasets
#' @examples
#' library(tsibble)
#' hh_budget
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.